Joint Meeting of ASN, SSB and SSE
Shuttle Bus Schedule

Saturday, June 14
5:00 pm - 10:00pm Kittredge - Williams Village

Sunday, June 15
7:30 - 9:30am Williams Village, Holiday Inn - UMC
5:00 - 6:30pm UMC - Williams Village, Holiday Inn, Kittredge
7:00 - 8:30pm Williams Village, Holiday Inn, Kittredge - Macky
9:30 - 11:15pm Macky - Williams Village, Holiday Inn, Kittredge

Monday, June 16
7:30 - 9:30am Williams Village, Holiday Inn - UMC
4:30 - 7:00pm UMC - Holiday Inn - Williams Village
7:15 - 8:15pm Williams Village - Macky, Kittredge, Holiday Inn
8:45 - 9:30pm Macky - Williams Village, Kittredge, Holiday Inn

Tuesday, June 17
7:30 - 9:30am Williams Village, Holiday Inn - UMC
5:00 - 7:00pm UMC - Holiday Inn - Williams Village
7:15 - 8:15pm Williams Village, Holiday Inn, Kittredge - Macky
8:45 - 9:30pm Macky - Williams Village, Kittredge, Holiday Inn

Wednesday, June 18
7:30 - 9:30am Williams Village, Holiday Inn - UMC
11:00 - 12:30pm UMC - Holiday Inn, Kittredge, Williams Village

Please note: Participants living at the Broker Inn may walk across the street to Williams Village to board the shuttle bus
Annual Meeting
American Society of Naturalists
Society of Systematic Biologists
Society for the Study of Evolution

June 14 - 18, 1997
Boulder, Colorado

Table of Contents

Summary Schedule of Events 3
Notice to Speakers and Poster Presenters 4
Exhibitors 4
Symposia, Contributed Papers and Posters 5
Index of Speakers and Poster Presenters 70

Meeting Host: Jeff Mitton
Program Organization: Brian Kreiser

Front Cover: An ancient limber pine, Pinus flexilis, near Trail Ridge Road, Rocky Mountain National Park
Back Cover: Common killifish, Fundulus heteroclitus, swimming over a bed of blue mussels, Mytilus edulis
Drawing by Jan Logan

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/14</td>
<td>2:00-9:30PM</td>
<td>Proutfest - Symposium and Dinner at the Mountain Research Station</td>
</tr>
<tr>
<td>(Sat)</td>
<td>1:00-9:00</td>
<td>Registration at Williams Village</td>
</tr>
<tr>
<td></td>
<td>1:00-3:00</td>
<td>ASN/SSB/SSE Coordinating Council Meeting (Williams Village 103)</td>
</tr>
<tr>
<td></td>
<td>3:00-5:00</td>
<td>ASN, SSB, SSE Council Meetings (Williams Village 101, 103 and 100)</td>
</tr>
<tr>
<td></td>
<td>7:00-10:00</td>
<td>Welcome reception, Williams Village</td>
</tr>
<tr>
<td>6/15</td>
<td>8:30-12:00</td>
<td>SSB Symposium - "Large Data Sets"</td>
</tr>
<tr>
<td>(Sun)</td>
<td>8:30-12:00</td>
<td>Concurrent Paper Sessions</td>
</tr>
<tr>
<td></td>
<td>12:00-1:30</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td>1:30-5:00</td>
<td>SSE Business Meeting (12:30-1:30)</td>
</tr>
<tr>
<td></td>
<td>1:30-5:00</td>
<td>NSF Information Session: Program updates, the review process, and questions and answers</td>
</tr>
<tr>
<td></td>
<td>1:30-5:00</td>
<td>ASN Vice President's Symposium - "Adaptive Hypotheses"</td>
</tr>
<tr>
<td></td>
<td>1:30-5:00</td>
<td>Concurrent Paper Sessions</td>
</tr>
<tr>
<td></td>
<td>4:30-5:30</td>
<td>SSE Presidential Address: R. Lande</td>
</tr>
<tr>
<td></td>
<td>4:30-6:30</td>
<td>Poster Session #1</td>
</tr>
<tr>
<td></td>
<td>8:00-9:00</td>
<td>Address by Professor E.O. Wilson</td>
</tr>
<tr>
<td></td>
<td>9:00-11:00</td>
<td>Social for E.O. Wilson</td>
</tr>
<tr>
<td>6/16</td>
<td>8:00-12:00</td>
<td>SSE Symposium - "Mutations"</td>
</tr>
<tr>
<td>(Mon)</td>
<td>8:30-12:00</td>
<td>Concurrent Paper Sessions</td>
</tr>
<tr>
<td></td>
<td>12:00-1:30</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td>1:30-5:00</td>
<td>ASN Business Meeting (12:30-1:30)</td>
</tr>
<tr>
<td></td>
<td>1:30-5:00</td>
<td>NIH Grants Workshop</td>
</tr>
<tr>
<td></td>
<td>1:30-5:00</td>
<td>SSB Symposium "Developmental Patterns"</td>
</tr>
<tr>
<td></td>
<td>1:30-5:15</td>
<td>Concurrent Paper Sessions</td>
</tr>
<tr>
<td></td>
<td>4:30-6:30</td>
<td>Poster Session #2</td>
</tr>
<tr>
<td></td>
<td>6:00-7:45</td>
<td>Barbecue</td>
</tr>
<tr>
<td></td>
<td>8:00-9:00</td>
<td>ASN Presidential Address: G. Vermeij</td>
</tr>
<tr>
<td>6/17</td>
<td>8:30-11:30</td>
<td>ASN Young Investigators Symposium</td>
</tr>
<tr>
<td>(Tues)</td>
<td>8:30-12:00</td>
<td>Concurrent Paper Sessions</td>
</tr>
<tr>
<td></td>
<td>12:00-1:30</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td>1:30-5:00</td>
<td>SSB Business Meeting (12:30-1:30)</td>
</tr>
<tr>
<td></td>
<td>1:30-5:00</td>
<td>NSF Population Biology: Open Discussion - The role of model organisms in research in population biology</td>
</tr>
<tr>
<td></td>
<td>1:30-5:00</td>
<td>SSE Symposium - "Self-Recognition Systems"</td>
</tr>
<tr>
<td></td>
<td>1:30-5:15</td>
<td>Concurrent Paper Sessions</td>
</tr>
<tr>
<td></td>
<td>4:30-6:30</td>
<td>Poster Session #3</td>
</tr>
<tr>
<td></td>
<td>5:30-6:30</td>
<td>ASN/SSB/SSE Coordinating Council Meeting</td>
</tr>
<tr>
<td></td>
<td>6:00-7:45</td>
<td>Banquet</td>
</tr>
<tr>
<td></td>
<td>8:00-9:00</td>
<td>SSB Presidential Address: J. Savage</td>
</tr>
<tr>
<td>6/18</td>
<td>8:00-12:00</td>
<td>Concurrent Paper Sessions</td>
</tr>
</tbody>
</table>
Notice to Speakers and Poster Presenters

Speakers:
Please check the schedule to reconfirm the session and time of your talk. There may have been some minor changes in the presentation number and time of your talk since the preliminary program was posted on the website. The 15 minutes that you are allotted includes both the presentation and question periods. To keep the session on schedule please do not exceed this time limit. The chair of the session will signal you at 12 minutes and then physically remove you from the podium at 15 minutes.

Poster Presenters:
Each poster has been assigned a number corresponding to a reserved space. You are allowed 4 ft. by 4 ft. for your poster. Please do not encroach upon the space of other presenters. There are three separate posters sessions (Sunday, Monday and Tuesday afternoons). Posters may be put up from 2:00-4:00 on the day in which you are presenting. For the Sunday and Monday sessions, posters must be removed by 2:00 the next day. Posters in the Tuesday session must be removed at the end of the session. All posters sessions will be located in UMC East Ballroom.

Exhibitors - Book Publishers

There will be a book publisher's display in the UMC West Ballroom. We hope that all participants will stop by during the course of the meeting to see the books from these fine publishers.

Oxford University Press
Blackwell Science Inc.
Academic Press
Harvard University Press
Princeton University Press
Sinauer Associates, Inc.
The University of Chicago Press
University Press of Colorado
Saturday, 14th June

1:00-9:00 Registration at Williams Village

2:00-9:30 Proutfest - Symposium and Dinner at the Mountain Research Station

1:00-3:00 ASN/SSB/SSE Coordination Council Meeting - Williams Village Darley Commons 103

3:00-5:00 ASN Council Meeting - Williams Village Darley Commons 101
 SSB Council Meeting - Williams Village Darley Commons 103
 SSE Council Meeting - Williams Village Darley Commons 100

7:00-10:00 Welcome Reception - Williams Village
Sunday, 15th June

UMC Center Ballroom

8:30-12:00 Symposium 1 - Phylogenetic Analyses of Large Data Sets
Organizers: Pamela Soltis and Douglas Soltis

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>1</td>
<td>Efficiency of Phylogenetic Methods with Large Data Sets</td>
<td>D.M. Hillis</td>
</tr>
<tr>
<td>9:00</td>
<td>2</td>
<td>Tree Comparison Metrics for the Evaluation of Large Data Sets</td>
<td>D. Penny, M. Hendy</td>
</tr>
<tr>
<td>9:30</td>
<td>3</td>
<td>Inference and Reliability of Large Phylogenies Under the Minimum Evolution Criterion</td>
<td>S. Kumar</td>
</tr>
<tr>
<td>10:00</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>4</td>
<td>Advantages of Parsimony Jackknifing</td>
<td>J.S. Farris, V. Albert</td>
</tr>
<tr>
<td>11:00</td>
<td>5</td>
<td>The Construction of Maximally Informative Phylogenetic Supertrees</td>
<td>M.J. Sanderson, C. Henze</td>
</tr>
</tbody>
</table>

JILA Auditorium

8:30-10:00 Session 1 - Adaptation and Plasticity
Chair: Sally Aitken

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>7</td>
<td>Phenotypic Plasticity and Drought Sensitivity in Douglas-Fir (Pseudotsuga Menziesii)</td>
<td>S.N. Aitken, B.J. Yoder, K.L. Kavanagh, B.L. Gartner</td>
</tr>
<tr>
<td>8:45</td>
<td>8</td>
<td>Causes and Consequences of Variation in Germination for a Winter Annual: Evidence for Adaptation to Desert Environments?</td>
<td>M.J. Clauss, D.L. Venable</td>
</tr>
<tr>
<td>9:00</td>
<td>9</td>
<td>Ecophysiology of Water Relations in Arabis Fecunda, a Rare Plant</td>
<td>J. Mckay, J. Richards, T. Mitchell-Olds, A. Sala</td>
</tr>
<tr>
<td>9:15</td>
<td>10</td>
<td>Sources of Genotype X Environment Interaction for Fitness in Plantago Lanceolata</td>
<td>S.A. Dudley, J. Schmitt</td>
</tr>
<tr>
<td>9:30</td>
<td>11</td>
<td>Parental Effects in Plantago Lanceolata. III. The Measurement of Temperature Effects in the Field</td>
<td>E.P. Lacey, D. Herr</td>
</tr>
<tr>
<td>9:45</td>
<td>12</td>
<td>Salt Tolerance in Plantago Coronopus: Responses to Artificial Selection in Constant and Heterogeneous Environments</td>
<td>M. Smekens, P. Van Tienderen</td>
</tr>
</tbody>
</table>
Fine Arts N141
8:30-10:00 Session 2 - Life Histories and Development
 Chair: Christian Klingenberg

 *S.F. Craig

8:45 14 Quantifying Fluctuating Asymmetry with Geometric Morphometrics
 *C.P. Klingenberg

9:00 15 Morphogenesis of the Gastropod Radulae: Character States in Transformation
 *D.R. Lindberg, R.P. Guralnick

9:15 16 The Evolution Life History and Population Stability in Laboratory Populations of *Drosophila
 A. Joshi, *L. Mueller

9:30 17 Snail Trematode Interactions: Tests of Gigantism, Fecundity Compensation and Juvenile
 Susceptibility in the Freshwater Snail *Potamopyrgus antipodorum
 *A. Krist, C. Lively

9:45 18 Spontaneous Mutation Accumulation in *Caenorhabditis elegans
 *L.L. Vassilieva, M. Lynch

Chemistry 140
8:30-10:00 Session 3 - Hybridization And Sexual Isolation
 Chair: Jeffrey McKinnon

8:30 19 A Test of Parallel Speciation Using Japanese and British Columbia Populations of the
 Three-Spine Stickleback
 *J.S. McKinnon, D. Schluter, S. Mori

8:45 20 Male Preference for Hybrid Phenotypes in a Gynogenetic Complex of Poeciliid Fishes
 *L. Dries

9:00 21 Hybridization and Introgression Between Two Species of *Orconectes Crayfishes in Northern
 Wisconsin, and It's Implications for Species Invasions
 *W.L. Perry, J.L. Feder, D.M. Lodge

9:15 22 Asymmetric F1 Parentage in a Newt Hybrid Zone
 *G.P. Wallis, J.W. Arntzen

9:30 23 An Incipient Speciation Event in the *Drosophila willistoni Group
 *V.R. DeFilippis, F.J. Ayala

9:45 24 Reproductive Isolation Between Sympatric Populations of Pea Aphids on Two Hosts: Fitness
 of Hybrids
 *S. Via
Chemistry 142
8:30-10:00
Session 4 - Behavior
Chair: Thomas Getty

8:30 25 End-Products of Behaviour vs. Behavioural Characters: Which Gives a More Reliable Phylogeny for Blackflies (Diptera: Simuliidae)?
* A. Stuart, F. Hunter

8:45 26 Variation in Increased Male Mortality Due to Mating with Males of Different Strains of Drosophila melanogaster
R. Smith, *N.A. Johnson

9:00 27 Evolution of Recognition Behavior and Morphological Stasis in the Botryllid Ascidians
*C.S. Cohen

9:15 28 Sex Allocation Patterns in Haplodiploid, Gall-Forming Thrips (Insecta: Thysanoptera)
*B. Kranz, B. Crespi, M. Schwarz, L. Mound

9:30 29 Handicap Signaling: When Fecundity and Viability Do Not Add Up
*T. Getty

9:45 30 Phenotypic Engineering of a Pheromone Reveals a Multi-Component Badge of Status
*P.J. Moore, K.F. Haynes, A.J. Moore

Ramaley C250
8:30-10:00
Session 5 - Population Genetics
Chair: Tracie Jenkins

8:30 31 Phylogeography of a Relict Species: The Iowa Pleistocene Snail (Discus macclintockii)
*T. Ross

8:45 32 Mitochondrial DNA Genetic Patterns in the Subterranean Termite (Isoptera: Rhinotermitidae)
*T.M. Jenkins, B.T. Forschler

9:00 33 Genetic Variation in Populations of the Fathead Minnow (Pimephales promelas) and the Plains Killifish (Fundulus zebrinus) from an Intermittent Stream
*B.R. Kreiser, J.B. Mitton, J. Woodling

9:15 34 Genetic Differentiation among Pygmy Whitefish (Prosopium coulteri) Populations, with Varying Life History Traits, Using RAPD and Mitochondrial Gene Sequence Analysis
*L. Rankin, D.M. Blouw, D.D. Heath

9:30 35 Mitochondrial DNA Variation in the Blue Crab (Callinectes sapidus Rathbun): Are the Highly Diverse Haplotypes Geographically Structured?
*A.L. McMillen-Jackson, T.M. Bert

9:45 36

8
8:30-10:00 Session 6 - Quantitative Genetics
Chair: Adam Chippindale

8:30 37 Age-Specific Properties of Spontaneous Mutations Affecting Mortality in Drosophila melanogaster
*S.D. Pletcher, J.W. Curtsinger

8:45 38 Mapping of Genetic Factors Causing Genotype-By-Environment Interaction for Fitness in Drosophila melanogaster
*J.D. Fry, S. Nuzhdin, E. Pasyukova, T.F.C. Mackay

9:00 39 Measuring Heritable Variation in Net Fitness: A New Technique Using Cytogenetic Cloning of Drosophila
*A. Chippindale, B. Rice

9:15 40 The Evolution of Threshold Traits: A Quantitative Genetic Analysis of the Physiological and Life History Correlates of Wing Dimorphism
*D. Roff, G. Stirling, D. Fairbairn

9:30 41 Partitioning a Fitness Tradeoff: Genetic and Physiological Components
*G. Stirling, D. Roff

9:45 42

**
Old Main Chapel
8:30-10:00 Session 7 - Plant Mating/Breeding Systems
Chair: Phil Gibson

8:30 43 Experimental Test of Differential Seed Fitness in a Gynodioecious Species: Negative Pleiotropy vs. Gametophytic Selection
*L. Delph

8:45 44 Sex Allocation in Monomorphic and Dimorphic Populations of a Gynodioecious Plant, Lobelia siphilitica
*D. Dudle

9:00 45 Evolution of Gynodioecy in a Tropical Tree: Influence of Mating System and Floral Development
*P. Gibson, P. Diggle

9:15 46 Gender Specialization in Andromonoecious Solanum carolinense: Results from Field and Quantitative Genetic Studies
*E. Elle

9:30 47 Factors Influencing Sex Expression in Wurmbea dioica (Colchicaceae): Implications for the Evolution of Dioecy
*A. Case, S.C.H. Barrett

9:45 48 Mating System Evolution in Linanthus (Polemoniaceae): Phylogenetic Evidence from ITS Sequence Data
*C. Goodwillie

10:00-10:30 Break
JILA Auditorium
10:30-12:00
Session 8 - Adaptation and Plasticity
Chair: Susan Mopper

10:30 49
Is Adaptive Radiation Sex Specific? A Case Study in Anolis Lizards
*M. Butler

10:45 50
Phylogenetic and Ecological Aspects of Cooperative Breeding in the Bee-Eaters (Aves: Meropidae)
*B. Burt

11:00 51
Genetic Structure and Local Adaptation in a Dispersive Leafmining Insect
*S. Mopper, K. Landau

11:15 52
Genetic Basis of an Adaptive Radiation: Warning Color in Two Heliconius Species
*W.O. McMillan, C.D. Jiggins

11:30 53
Genetics of Adaptation: The Genetics of Drosophila sechellia's Resistance to a Naturally Occurring Toxin
*C. Jones, H.A. Orr

11:45 54
Variation and Possible Evolution of Dominance of an Insecticide Resistance Gene
*D. Bourguet, F. Didier, R. Michel

Fine Arts N141
10:30-12:00
Session 9 - Life Histories and Development
Chair: David Baum

10:30 55
Demographic Consequences of Variation in Life Histories of a Long-Lived Perennial Monocarpic Gentian, Frasera speciosa
*D.W. Inouye

10:45 56
Inclusive Fitness Theory and the Evolutionary Origin of Endosperm
*W. Friedman

11:00 57
The Molecular Genetic Basis for the Evolution of Solitary Flowers in Brassicaceae
*D. Baum, G. Shu, W. Amaral, E. Freeman

11:15 58
Evolution of Response to Light Signals in Wild Populations of Arabidopsis thaliana
*H. Callahan, M. Pigliucci

11:30 59
Ontogeny and Phylogeny of Marsileaceous Ferns: Evidence for Heterochrony
*K. Pryer

11:45 60

Chemistry 140
10:30-12:00
Session 10 - Geographic Variation and Hybrid Zones
Chair: Jon Bridle
10:30 61 A Mosaic Hybrid Zone Between Species of the *Bipalium* Group of Chorthippus Grasshoppers in Northern Spain
 J. Bridle, R. Butlin

10:45 62 The Role of Host-Plant Choice in the Local Adaptation of Divergent Pea Aphid Populations in Sympatry
 M. Caillaud, S. Via

11:00 63 Fine Scale Structure of a Field Cricket Mosaic Hybrid Zone
 C. Ross

11:15 64 Role of *Wolbachia* Infections in Two Hybrid Zones
 R. Giordano, J.J. Jackson, H.M. Robertson

11:30 65 Evidence of Hybridization Among Black Oaks of Eastern North America Based on Molecular Markers and Quantitative Morphometrics
 M.A. Thomas, B.A. McPheron, J.C. Schultz

11:45 66 An Ancient Polyploid Hybrid Zone in Birch (*Betula*).
 J.H. Williams, Jr, M.L. Arnold

**

Chemistry 142

10:30-12:00 Session 11 - Ecological Genetics
Chair: Joe Pollard

10:30 67 Intra-population Sex Ratio Variation in the Salt Grass *Distichlis spicata*.
 S. Eppley, M.L. Stanton, R.K. Grosberg

10:45 68 Relative Fitness of Polyploid Cytotypes of Big Bluestem *Andropogon gerar* (Poaceae)
 K. Keeler

11:00 69 Fitness Consequences of Transplantation in *Lotus scoparius*: Preliminary Test of the Outbreeding Depression Hypothesis
 A. Montalvo

11:15 70 Natural Selection on a Leaf Shape Polymorphism in the Ivyleaf Morning Glory (*Ipomoea hederacea*)
 K. Bright

11:30 71 Ecological Genetics of Heavy Metal Hyperaccumulation in *Thlaspi caerulescens*
 J. Pollard, K. Dandridge, E. Jhee

11:45 72

**

Ramaley C250

10:30-12:00 Session 12 - Population Genetics
Chair: Janice Bossart

10:30 73 Genetic Structure in a Coastal Dune Spider (*Geolycosa piket*) on Long Island, New York Barrier Islands: A Test of the Linear Stepping-Stone Model
 A.M. Boulton, M.G. Ramirez, C.P. Blair
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors/References</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:45</td>
<td>74</td>
<td>Comparative Population Genetics of Endemic Sonoran Desert Drosophila</td>
<td>*C. Breitmeyer</td>
</tr>
<tr>
<td>11:00</td>
<td>75</td>
<td>Minimal Genetic Variation in Coastal Dune Wolf Spiders</td>
<td>*M.G. Ramirez, A.M. Boulton, J.M. Lenes, W.J. Farr, K.K. Lay</td>
</tr>
<tr>
<td>11:30</td>
<td>77</td>
<td>Evolution in Fragmented Populations: Testing an Extinction/Recolonization Metapopulation Genetics Model Using Visible Genetic Markers</td>
<td>*A.M. McMillan</td>
</tr>
</tbody>
</table>

UMC 235

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors/References</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30</td>
<td>79</td>
<td>Retrospective Selection Gradient Analysis of Sexual Dimorphism in Silene latifolia</td>
<td>*T.R. Meagher</td>
</tr>
<tr>
<td>11:00</td>
<td>81</td>
<td>Evolution of Insect Resistance in Arabidopsis thaliana</td>
<td>*B. Barker, T. Mitchell-Olds, M. Tobler</td>
</tr>
<tr>
<td>11:15</td>
<td>82</td>
<td>Responses to Selection on Male and Female Investment in Spergularia marina (Caryophyllaceae): The Second Generation</td>
<td>*S.J. Mazer, V.A. Delesalle, P. Neal</td>
</tr>
<tr>
<td>11:30</td>
<td>83</td>
<td>Diminishing-Returns Epistasis in an Escherichia coli DNA Repair Mutant</td>
<td>J. Blanchard, M. Lynch*</td>
</tr>
<tr>
<td>11:45</td>
<td>84</td>
<td>Genetic Integration of Maternal and Offspring Characters</td>
<td>*J.B. Wolf, E.D. Brodie III</td>
</tr>
</tbody>
</table>

Old Main Chapel

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors/References</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30</td>
<td>85</td>
<td>Fitness Benefits of Induced Responses to Herbivory in a Wild Mustard</td>
<td>*A.A. Agrawal</td>
</tr>
<tr>
<td>11:00</td>
<td>87</td>
<td>The Dimensions of Plant Resistance to Herbivory: Looking Beyond Phytochemistry</td>
<td>*A.E. Weis</td>
</tr>
<tr>
<td>11:15</td>
<td>88</td>
<td>Evolutionary Consequences of Differential Host Utilization By Two Parasites of Ponderosa Pine</td>
<td>*Y.B. Linhart, M.A. Snyder</td>
</tr>
</tbody>
</table>
11:30 89 Selection on Flower Color Polymorphism From Foliage-Feeding Herbivores?
*S.Y. Strauss, A. Emerson

11:45 90 Genetic Variability for Tolerance to Defoliation in *Datura stramonium*
*J.E. Fornoni, J. Núñez-Farfán

12:00-1:30 - Lunch
- SSE Business Meeting (12:30-1:30) - UMC 157
- UMC Forum
NSF Information Session: Program updates, the review process, and questions and answers
L. Lyons, M. Courtney (Population Biology) & C. O'Kelly (Systematic Biology)

1:30-5:00 UMC Center Ballroom
Symposium 2 - Testing Adaptive Hypotheses Through Genetic and Physiological Manipulation
Organizer: Johanna Schmitt

1:30 91 Manipulative Approaches to the Study of Adaptive Plasticity
*J. Schmitt

2:00 92 Phenotypic Engineering: Using Hormones to Explore Adaptation
*E. Ketterson, V. Nolan

2:30 93 Experimental Manipulations of Reproductive Allocation and Life History Adaptation
*B. Sinervo

3:00-3:30 Break

3:30 94 Transgenes in the Analysis of Stress Tolerance and Life Histories
*M. Tatar

4:00 95 Evolutionary Physiology of Heat Shock Proteins and the Stress Response in *Drosophila*:
How Directed Mutagenesis and Natural Variation Can Contribute to Understanding Adaptation
*M. Feder

4:30 96 Exploring the Evolution of Plant Defenses with Transgenes
*J. Bergelson, C. Purcell

JILA Auditorium
1:30-3:00 Session 15 - Coevolution
Chair: William Rice

1:30 97 Correlation Between Virulence and Vertical Transmission in a Plant Pathogen and It's Consequences on the Evolution of Pathogen's Virulence.
*P.X. Kover, K. Clay

1:45 98 A Model of Endosymbiotic Mutualism with Horizontal Transmission: Host Strategies to Minimize Symbiont Cheating
*T. Wilcox
2:00 99 The Intraspecific Red Queen as a Catalyst in Evolution
*W.R. Rice

2:15 100 Red Queen Meets Santa Rosalia: Evolution of Specialization Driven by Arms-Races
*T.J. Kawecki

2:30 101 The Evolution of Specialization in the Seed Beetle Genus Stator
(Coleoptera: Chrysomelidae: Bruchinae)
*G. Morse, B. Farrell, C.D. Johnson

2:45 102 Host-Plant Use Drives Polymorphism in Heliconius Butterflies
*D.D. Kapan

Old Main Chapel
1:30-3:00 Session 16 - Sexual Selection
Chair: Robert Warner

1:30 103 Antagonistic Seduction - A New Hypothesis for the Evolution of Ornaments
*B. Holland

1:45 104 Variation Among Taxa in a Pre-Existing Bias
*A.L. Basolo

2:00 105 Courtship as an Indicator of Safety Rather Than Male Quality
*R.R. Warner

2:15 106 Polyandry as a Hedge Against Genetic Incompatibility
*J.A. Zeh, D.W. Zeh

2:30 107 Sexual Selection, Nearly Neutral Theory and the Rate of Molecular Evolution
*P. Wimberger, R. Reis

2:45 108 Empty Nuptial Gifts in an Empidid Fly, Empis snoddyi: Bigger Isn't Always Better
*J.A. Sadowski, A.J. Moore, E.D. Brodie III

UMC 235
1:30-3:00 Session 17 - Molecular Evolution
Chair: Scott Edwards

1:30 109 Test of Convergent and Parallel Evolution at the Amino Acid Sequence Level
*J. Zhang, S. Kumar

1:45 110 Something Odd Has Happened in a Mus Histone H2a Pseudogene
*R.W. Debry

2:00 111 Cloning and Evolution of Mhc Class II Genes from North American Songbirds
*S.V. Edwards, J. Gasper

2:15 112 Selective Regimes Affecting Replacement Substitutions in D. melanogaster and E. coli Are Revealed Through Quantifying the Bioenergetic Costs of Amino Acid Synthesis
*C.L. Craig, R.S. Weber
2:30 113 Evolution of Abalone Sperm Fertilization Proteins and Characterization of the Egg Receptor
*W.J. Swanson, V.D. Vacquier

2:45 114 Contrasting Patterns of Molecular Evolution Among Invertebrate Sperm-Egg Recognition
Loci
*E.C. Metz, V.D. Vacquier

Ramaley C250
1:30-3:00 Session 18 - Population Genetics
Chair: Matthew Hare

1:30 115 Using Introns to Measure Intraspecific Genetic Structure: Distinguishing Loci, Alleles, and
Polymerase Errors
*S.C. France, S.R. Palumbi

1:45 116 Multilocus Approaches to Individual and Population Origins
*N. Davies, F.X. Villablanc, G.K. Roderick

2:00 117 Use of Multiple Analyses (Phylogeny, Nucleotide Diversity, and Patterns of Sequence
Variation) to Determine Effects of Historical Processes on Current Patterns of MtDNA
Variation
*C.A. Tibbets

2:15 118 Moving Beyond MtDNA: Finding and Utilizing Nunt (Nuclear DNA of Mitochondrial
Origin) for the Construction of Intraspecific Gene Trees.
*M. Hare, S. Palumbi

2:30 119 Inferring Ancient Human Demographic History from Nuclear Microsatellite Haplotype Data
*S.A. Tishkoff, A.G. Clark

2:45 120 Using Coalescent Theory to Infer Historical Demography in the Phytophagous Beetle
Ophraella
*L.L. Knowles, D.J. Futuyma

Chemistry 140
1:30-3:00 Session 19 - Molecular Systematics
Chair: Mark Springer

1:30 121 Molecular Phylogeny of the Marmots (Rodentia: Sciuridae) and Its Significance for Holarctic
and Amphiberian Biogeography.
*S. Steppan, M. Hakhverdyan, E. Lyapunova, M. Braun

1:45 122 Phylogeny of the Extant Malagasy Lemuriformes Based on 16S Sequence Data and a Review
of the Current Evidence
*K.F. Stanger-Hall, C. Cunningham

2:00 123 Molecular Evidence for a Diverse Clade of Endemic African Mammals
*M. Springer, M. Stanhope, W. De Jong

2:15 124 The Artiodactyl Radiations
*J. Gatesy

15
<table>
<thead>
<tr>
<th>Time</th>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:30</td>
<td>125</td>
<td>Mountain Sheep Evolution: Molecular and Morphological Perspectives</td>
<td>*R.R. Ramey II</td>
</tr>
<tr>
<td>2:45</td>
<td>126</td>
<td>Evidence From Two Mitochondrial Genes for the Relationships Within Perissodactyla</td>
<td>*J.E. Norman, M.V. Ashley</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemistry 142</td>
<td></td>
</tr>
<tr>
<td>1:30</td>
<td>127</td>
<td>Session 20 - Phylogenetic Methodology</td>
<td>Chair: Brian Crother</td>
</tr>
<tr>
<td>1:30</td>
<td>127</td>
<td>Sensitivity of Phylogeny Estimation to Incomplete Taxonomic Sampling</td>
<td>*S. Poe</td>
</tr>
<tr>
<td>1:45</td>
<td>128</td>
<td>Parsimony, Step Matrices, and the Interpretation of Homoplasy</td>
<td>*R. Ree, M. Donoghue</td>
</tr>
<tr>
<td>2:00</td>
<td>129</td>
<td>The Behavior of the PTP Test</td>
<td>*B.I. Crother, J.B. Slowinski</td>
</tr>
<tr>
<td>2:15</td>
<td>130</td>
<td>Is It Better to Add Characters or Taxa to a Difficult Phylogenetic Problem? A Simulation Study</td>
<td>*A. Graybeal</td>
</tr>
<tr>
<td>2:45</td>
<td>132</td>
<td>Tree Shape Bias, Character Weighting, and the Impact of Noise on Phylogenetic Analysis.</td>
<td>*N. Caithness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fine Arts N141</td>
<td></td>
</tr>
<tr>
<td>1:30</td>
<td>133</td>
<td>Session 21 - Plant Mating/Breeding Systems</td>
<td>Chair: Judy Stone</td>
</tr>
<tr>
<td>1:30</td>
<td>133</td>
<td>Differential Siring Success of PGI Genotypes in Clarkia unguiculata</td>
<td>*S.E. Travers</td>
</tr>
<tr>
<td>2:00</td>
<td>135</td>
<td>Phenotypic and Genetic Components of Floral Display in Eichhornia paniculata (Pontederiaceae)</td>
<td>*A.C. Worley, S.C.H. Barrett</td>
</tr>
<tr>
<td>2:15</td>
<td>136</td>
<td>Diploid-Tetraploid Mating and the Evolution of Polyploidy in Epilobium angustifolium (Onagraceae)</td>
<td>*B.C. Husband</td>
</tr>
<tr>
<td>2:30</td>
<td>137</td>
<td>Models for Packaging and Provisioning in Plant Reproduction</td>
<td>*D.L. Venable</td>
</tr>
<tr>
<td>2:45</td>
<td>138</td>
<td>The Effects of Pollen Transport Characteristics on the Evolution of Pollen Size</td>
<td>*L.D. Harder</td>
</tr>
<tr>
<td>Time</td>
<td>Location</td>
<td>Session Details</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3:00-3:30</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30-5:00</td>
<td>JILA Auditorium</td>
<td>Session 22 - Evolutionary Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chair: Sally Otto</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>139</td>
<td>QTL and Epistasis: The Quantitative Genetics of Metapopulations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*C. Goodnight</td>
<td></td>
</tr>
<tr>
<td>3:45</td>
<td>140</td>
<td>The Origin of Order and Organization in Evolution: The Role of the Persistibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selection Force</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*P. Johnson, U. Gullberg</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>141</td>
<td>The Effect of Recombination on Adaptive Peak Shifts in a Structured Population.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*F.B-G. Moore, R. Lenski</td>
<td></td>
</tr>
<tr>
<td>4:15</td>
<td>142</td>
<td>Estimating Ancestral States of Behavior Under Varying Microevolutionary Scenarios</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*E.P. Martins</td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td>143</td>
<td>Rates of Evolution in Changing Environments</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*S. Otto, M. Whitlock</td>
<td></td>
</tr>
<tr>
<td>4:45</td>
<td>144</td>
<td>Population Dynamics Under Cytonuclear Selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*M.A. Asmussen, C.S. Babcock</td>
<td></td>
</tr>
</tbody>
</table>

Old Main Chapel

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Session Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30-5:00</td>
<td>Session 23 - Sexual Selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chair: Andy Snedden</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>146</td>
<td>The Influence of Opposing Selection Pressures on Cricket Calling Behavior</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*S. Bertram</td>
</tr>
<tr>
<td>3:45</td>
<td>147</td>
<td>Genetic Tradeoffs in the Calling Behavior of Male Field Crickets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*W.E. Wagner Jr.</td>
</tr>
<tr>
<td>4:00</td>
<td>148</td>
<td>Females Prefer Leading Males: Precedence Effects Drive Chorus Structure in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tøøngara Frog</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*W.A. Snedden, A.S. Rand, M.K. Tourtellot</td>
</tr>
<tr>
<td>4:15</td>
<td>149</td>
<td>Precedence Effects and the Evolution Of Chorusing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*M. Greenfield, W.A. Snedden, M.K. Tourtellot</td>
</tr>
<tr>
<td>4:30</td>
<td>150</td>
<td>Species and Mate-Quality Recognition in Spadefoot Toads</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*K. Pfennig</td>
</tr>
<tr>
<td>4:45</td>
<td>151</td>
<td>Historical Influences on Mate Recognition: Using Neural Networks to Model Sensory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biases in the Tungara Frog</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*S.M. Phelps, M.J. Ryan</td>
</tr>
</tbody>
</table>

Fine Arts N141

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Session Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30-5:15</td>
<td>Session 24 - Speciation and Cladogenesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chair: Chris Schneider</td>
<td></td>
</tr>
</tbody>
</table>
3:30 153 Historical Allopatry, Divergence, and Speciation in the Prosobranch Snail Genus Nucella
 *P. Marko

3:45 154 Phylogeographic Patterns in Lowland Amazonian Frogs
 *A. Chek, S. Lougheed, J. Bogart, P. Boag

4:00 155 Multiple Independent Origins of Tetraploid Tragopogon Species (Asteraceae): Evidence
 from RAPD Markers

4:15 156 Recent Ice Age Origins for North American Songbirds: A Failed Paradigm.
 *J. Klicka, R.M. Zink

4:30 157 The Effect of Pleistocene Climate Change on Diversification in Australian Rainforests: The
 End of the Pleistocene Speciation Model
 *C. Schneider, C. Moritz

4:45 158 A Phylogenetic Assessment of the African Pycnonotidae and Its Implications for Speciation
 in the Afrotropics
 *K. O'Keefe, T.B. Smith

5:00 159 Adaptive Radiations in the Shrub Genus Ceanothus: An Examination of Proposed Models
 Using Internal Transcribed Spacer (ITS) Region Sequence Data.
 *T.M. Hardig, P.S. Soltis, D.E. Soltis

UMC 235
3:30-5:00 Session 25 - Molecular Evolution
Chair: Hsiu-Ping Liu

3:30 160 Evolution of Two Mitochondrial Gene Regions in a Sea Star (Leptasterias) Cryptic Species
 Complex
 *A.W. Hrincevich, D.W. Foltz

3:45 161 End Products of Animal MtDNA Recombination
 *D.H. Lunt, B.C. Hyman

4:00 162 Evolutionary Patterns of Doubly Uniparental Inheritance in Freshwater Mussels
 *H-P Liu, M. Mulvey, J.B. Minton

4:15 163 Evolution of Mitochondrial COII and New World Monkeys (Primates, Platyrhini)
 *M. Von Dornum, M. Ruvolo

4:30 164 How Many Types of Mitochondrial DNA in a Grasshopper?
 *D. Bensasson, D. Zhang, G.M. Hewitt

4:45 165 Cytochrome-b Evolution in Birds and Mammals: Evidence for Increased Constraint in
 Birds?
 *S. Stanley

Ramaley C250
3:30-5:00 Session 26 - Population Genetics
Chair: Victoria Apsit

18
<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30</td>
<td>167</td>
<td>Population Genetic Variation in the Alpine Endemic Eutrema penlandii (Brassicaceae) and Its Widespread Relative E. edwardsii.</td>
<td>*R.C. Hardwick, L.P. Brudelerle</td>
</tr>
<tr>
<td>4:00</td>
<td>169</td>
<td>Population Genetics of Rhizophora mangle from Mexico</td>
<td>*J. Nuñez-Farrán, L.E. Eguiarte, C.A. Dominguez, R. Dirzo</td>
</tr>
<tr>
<td>4:15</td>
<td>170</td>
<td>Fragmentation and Pollen Movement in a Costa Rican Dry Forest</td>
<td>*V.I. Apsit, J.L. Hamrick</td>
</tr>
<tr>
<td>4:30</td>
<td>171</td>
<td>DNA Sequence Variation at Two Basic Chitinase Genes in Arabis secunda, a Rare Plant</td>
<td>*J. Bishop, T. Mitchell-Olds, D. Pedersen, B. Stranger</td>
</tr>
<tr>
<td>4:45</td>
<td>172</td>
<td>The Effect of Mutation and Adaptive History in Experimental Evolution Of E. coli</td>
<td>*A. de Visser, C. Zeyl, J. Blanchard, R. Lenski</td>
</tr>
</tbody>
</table>

Chemistry 140

3:30-5:00
Session 27 - Molecular Systematics
Chair: Paul Chippindale

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30</td>
<td>174</td>
<td>The Evolution of Diapause in the Rivulidae: A Molecular Phylogenetic and Biogeographic Perspective</td>
<td>*T. Hrbeck, A. Larson</td>
</tr>
<tr>
<td>3:45</td>
<td>175</td>
<td>Ancient Species Flocks in Marine Fishes? Tests Based on Molecular Phylogenetic Appraisals of the Sebastes Rockfish and Other Groups</td>
<td>*G.C. Johns, J.C. Avise</td>
</tr>
<tr>
<td>4:00</td>
<td>176</td>
<td>Molecular Systematics and Evolution of the Strike in Natricine Snakes (Colubridae)</td>
<td>*M.E. Alfaro</td>
</tr>
<tr>
<td>4:15</td>
<td>177</td>
<td>Phylogenetic and Population Genetic Utility of the Mitochondrial D-Loop Region in Central Texas Spring and Cave Salamanders, Eurycea and Typhlodonolge</td>
<td>*P. Chippindale, K. Burnside, P. Perryman, J. Willard</td>
</tr>
<tr>
<td>4:45</td>
<td>179</td>
<td>Evolution of North American Softshell Turtles: A Possible Exception to the Theory of Slow Rates</td>
<td>*D.W. Weisrock, F.J. Janzen</td>
</tr>
</tbody>
</table>

Chemistry 142

3:30-5:15
Session 28 - Phylogenetic Methodology
Chair: Guy Hoelzer

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30</td>
<td>181</td>
<td>Bayesian Phylogenetic Inference Using DNA Sequences</td>
<td>*B. Rannala, Z. Yang</td>
</tr>
<tr>
<td>Time</td>
<td>Code</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3:45</td>
<td>182</td>
<td>Extracting Species Trees from Complex Gene Trees</td>
<td>*R. Page, M. Charleston</td>
</tr>
<tr>
<td>4:00</td>
<td>183</td>
<td>Relative Apparent Synapomorphy Analysis (RASA): A Tree-Independent Method of Phylogenetic Data Analysis.</td>
<td>*G.A. Hoelzer, J. Lyons-Weiler</td>
</tr>
<tr>
<td>4:15</td>
<td>184</td>
<td>Detection and Remediation of the Effects of Long Branch Attraction Using RASA</td>
<td>*J. Lyons-Weiler, G.A. Hoelzer</td>
</tr>
<tr>
<td>4:30</td>
<td>185</td>
<td>Molecular Systematics and Biogeography of Antillean Plant Groups</td>
<td>*E. Santiago-Valentin, R.G. Olmstead</td>
</tr>
<tr>
<td>4:45</td>
<td>186</td>
<td>Inferring Species Trees from Gene Trees</td>
<td>*J.B. Slowinski, R. Page</td>
</tr>
<tr>
<td>5:00</td>
<td>187</td>
<td>Causes And Consequences of Star-Phylogeny</td>
<td>*M. Hedin</td>
</tr>
</tbody>
</table>

UMC Forum

<table>
<thead>
<tr>
<th>Time</th>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:30-5:30</td>
<td></td>
<td>SSE Presidential Address: Genetics, Evolution and Conservation</td>
<td>*Russell Lande</td>
</tr>
</tbody>
</table>

UMC East Ballroom

<table>
<thead>
<tr>
<th>Time</th>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:30-6:30</td>
<td></td>
<td>Poster Session 1</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td></td>
<td>Non-Linear Simulation of Natural Selection with Feedback</td>
<td>*M.C. Grant, D. Robertson</td>
</tr>
<tr>
<td>189</td>
<td></td>
<td>Detecting Epistatic Fitness Interactions in Haploids And Diploids</td>
<td>*A.D. Peters</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td>A Computer Simulation Model of Parapatric Speciation</td>
<td>*T. Gregg, J. Bloom</td>
</tr>
<tr>
<td>191</td>
<td></td>
<td>A Graphical Model for the Occurrence and Frequency of Cannibalism in Polyphenic Salamanders</td>
<td>*C. Beck</td>
</tr>
<tr>
<td>192</td>
<td></td>
<td>How the Life History of Carp (Cyprinus carpio) Has Adapted to Regulated Rivers: The Role Of Naturalization and Domestication</td>
<td>*P.D. Driver, R. Norris, G. Closs, J. Harris</td>
</tr>
<tr>
<td>193</td>
<td></td>
<td>Genetic Diversity for Reaction Norms to Nutrient Availability in Datura stramonium</td>
<td>*J. Núñez-Farfán, J.E. Fornoni, S.A. Careaga, F.A. Bazzaz</td>
</tr>
<tr>
<td>194</td>
<td></td>
<td>The Genetic Architecture of Shade Avoidance Responses in Impatiens capensis</td>
<td>*K. Donohue, J. Schmitt</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td>Tests of Evolutionary Hypotheses Using Hybrids Between Drosophila serrata and D. birchii.</td>
<td>*D. Berrigan, M. Blows</td>
</tr>
</tbody>
</table>
196 Site-Directed Mutations Reveal Long-Range Compensatory Interactions in the Adh Gene of Drosophila melanogaster
 *J. Parsch, S. Tanda, W. Stephan

197 Evolution of Senescence in Laboratory Populations of Drosophila melanogaster
 C.A. Michieli, K. McGill, *P.M. Service

198 The Hormonal Basis of Life-History Variation: Juvenile Hormone Levels in Genetic Stocks of Gryllus firmus Differing in Early Reproduction
 *G. Cisper, A.J. Zera

199 Theories of Aging: Testing a Fundamental Assumption
 *P. Mack, L. Pearse, D. Promislow

200 Female Preference and Male Age in Drosophila
 *D. Price

201 When Are Good Genes Good? Variable Outcome of Female Choice in Wax Moths
 *F. Jia, M. Greenfield

202 Hybridization Among Three Species of Strongylocentrotus Urchins in the Pacific Northwest
 *W.C. Prather, D.R. Levitan

203 An Association Between X-Linked Traits and Speciation in Fall Armyworm Moths
 *D.P. Prowell, M. McMichael

204 Phylogeography of Lake Populations of Daphnia in Oregon
 *D. Straughan, N. Lehman

205 Arthropod Phylogeography in Hawaii: 4 Paths in Paradise
 *R. Gillespie, G. Roderick

206 Plant Response to Environmental Variation in the Big Sagebrush Hybrid Zone
 *J.H. Graham, D.C. Freeman, H. Wang, E.D. McArthur

207 Selection Against Mating with Immigrants as a Mechanism of Sympatric Speciation - Computer Simulation
 *N. Muge

208 Decline in a Cline: P Elements in Eastern Australian Drosophila melanogaster Populations
 M. Itoh, *I.A. Boussy, R.C. Woodruff

209 Molecular Composition of B Chromosomes in the Grasshopper Eyprepocnemis plorans
 *J. Cabrero, M.D. López-León, M. Bakkali, J.P.M. Camacho

210 Long Term vs. Short Term Genetic Structures of Self-Incompatible Populations Revealed by S-Allele and Neutral Gene Genealogies
 *Y. Lu, N. Takahata, M.K. Uyenoyama

211 Interspecific Evolution of Linked Microsatellites in the Adaptively Radiating Hawaiian Silversword Alliance
 *M. Barrier, R.H. Robichaux, M. Purugganan

212 Using Molecular Phylogeny to Infer Direction of Flight Evolution in Stoneflies
 *M.R. Wolf, K.A. Walsh, G.H. FitzHugh, J.H. Marden
213 RAGE (Rapid Assessment of Genomic Evolution): An Approach Based on Random Sequencing, and a Trial Application to the Genome of the House Fly (Musca domestica)
*S.A. McComas, L. Fulton

214 Characterization of the Alpha-Tubulin Gene from the Macronucleus and Micronucleus of Two Ciliate Species: Chilodonella uncinata and Euplotes crassus

215 Heterochrony in the Molecular Development Cascade of Drosophila
*J. Kim, J. Kerr

216 Characterization of LINE-1 Elements in Microtus
*C.D. Yarber, R.A. Grahn, H.A. Wichman

217 Factors Maintaining Androdioecy in the Desert Shrimp, Eulimnadia texana
*S.C. Weeks, N. Zucker

218 Microsatellite Markers Reveal Details of Family Structure in Ants
*J.M. Herbers

219 Hybrids as General-Purpose Genotypes: Phenotypic Plasticity and Predator-Driven Species Dynamics in Daphnia Hybrid Systems
*C. Wilson

220 Mating System and Progeny Characteristics of Nectar and Nectarless Honey Mesquites (Mimosoideae): Is Nectar Production an Adaptation?
*J. Golubov, L. Eguiarte, J. Lopez-Portillo, M. Madujano, C. Montana

221 Likelihood-Based Paternity Inference in Natural Populations
*T. Marshall, J. Slate, L. Kruuk, J. Pemberton

222 Climate Changes and Community Stability in a California Rocky Intertidal System
*S.E. Gilman, R.D. Sagarin, C.H. Baxter, J.P. Barry

223 An Ultrasensitive Method for Detection of Single Crab Larvae (Sesarma reticulatum) Using PCR Amplification of Highly Repetitive DNA Sequences
*A.L. Evans, D.L. Felder, J.E. Neigel

224 Modeler's Tool: An Algorithm for Teachers and Researchers
*R.F. Shaw

225 Mutation Rate: A Simple Concept Has Become Complex
*J.N. Thompson Jr., R.C. Woodruff

226 Population Genetic Structure of the Begonia dregel Complex Along the East Coast of South Africa
*L.O. Matolweni, T. McLellan, K. Balkwill

227 Sex Differences in Coalescent Times (A Theoretical Model)
*R.B. Campbell

228 Genetics and Evolution of the Mariner DNA Element in Drosophila simulans
*A.L. Russell, R.C. Woodruff
229 Within and Among-Population Size Homoplasy at a Microsatellite Locus in the Freshwater Snail *Bulinus truncatus* (Basommatophora: Planorbidae)
F. Viard, M-P Dubois, P. Jarne

230 The Effects of Unidirectional Incompatibility Selection on Cytonuclear Disequilibria in Hybrid Zones
R. Dean, J. Arnold

231 Estimates of Heritability of Male Effects on Female Oviposition in Two Populations of *Drosophila melanogaster*
E. Guthrie, P. Service

232 Juvenile Hormone Esterase and the Evolution of Flightlessness in *Gryllus firmus*
H. Yuan, A. Zera

233 Multivariate Evolution: An Island-Continent Model with Selection and Gene Flow
A. Queral-Regil, R.B. King

234 Elongation Factor 1-Alpha Sequences Elucidate Phylogenetic Relationships Within the Swallowtail Butterfly Genus *Papilio* (Lepidoptera: Papilionidae).
R.D. Reed, F.A.H. Sperling

235 Conflicting Phylogenetic Signals from a Single Molecular Data Set
B.N. Campbell, P.T. Boag

236 Phylogeny of *Ips* Bark Beetles (Scolytidae) Based on Mitochondrial Cytochrome Oxidase I Sequence
A.I. Cognato, F.A.H. Sperling

237 Population Structure and Intraspecific Phylogeny of the Flour Beetle, *Tribolium castaneum*
L.D. Roberts, P.T. Chippindale, N.A. Johnson

238 Evolution of Hawaiian Island and Insular Pacific *Pittosporum* (Pittosporaceae) Species as Estimated by Nuclear Ribosomal DNA Internal Transcribed Spacer Sequences
C.E.C. Gemmill, W.L. Wagner, E.A. Zimmer

239 Phenetic and Phylogenetic Comparisons Between 5.8S Ribosomal DNA in Plant Parasitic Cyst Nematodes and *C. elegans*
V.R. Ferris, J.M. Ferris, J. Faghihi

240 Phylogenetic History and Diversity of the Ant Genus *Gnamptogenys* in the New World
J. Lattke

241 On Weighting and Congruence
M.W. Allard

H. Severeyn, Y.G. De Severeyn

243 Phylogeography of the California Legless Lizard *Anniella pulchra*: Evidence for Parallel Evolution of the Nigra Phenotype from Cytochrome b Sequence Data
D.E. Pearse, G. Pogson

244 Climatic Change and the Molecular Biogeography of Coleoptera
R.A. Reiss
A New Polynomial Time Method for Inferring Trees Which Is Consistent and Has Great Statistical Power
P. Erdos, K. Rice, M. Steel, L. Szekely, T. Warnow

Large-Scale Experimental Study of Different Phylogenetic Reconstruction Methods on Very Large Trees
K. Rice, T. Warnow

Phylogeny of the Terebellomorpha and Sabellida (Annelida) and the Evolution of Larval Developmental Modes
D. McHugh

Estimating Food Preference in the Eastern Gray Squirrel, Sciurus carolinensis
E.L. Barthelmess

Stabilimenta and Prey Capture Success in Argiope (Araneae: Araneidae)
T.A. Blackledge

Molecular Evolution of Duplicated Growth Hormone Genes in Salmonid Fishes
S. Mckay, R. Devlin, M.J. Smith

Seed Number, Ethylene Production, and Sex Expression in Cucurbita texana
G.A. Krupnick, A.G. Stephenson

Self-Sterility in Milkweeds: Distinguishing Between Late-Acting Self-Incompatibility and Inbreeding Depression
S. Lipow

Inbreeding Depression in Autogamous and Outcrossing Populations of Arenaria uniflora (Caryophyllaceae)
L. Fishman

Intra- and Interspecific Genetic Variation Among Groups of Freshwater Mussels in North Carolina: Implications for Conservation
A.E. Stiven

Analysis of Genetic Diversity in the Western Mosquitofish, Gambusia affinis, Using Microsatellite DNA Techniques
C.C. Spencer

T. Bert, B. Chernoff

Evidence of Positive Selection in the Mammalian Milk Protein Kappa-Casein
T. Ward, R. Honeycutt, J.N. Derr

Conservation Genetics of Tursiops truncatus

Temporal and Spatial Variation in Hybridization Between Two Toads in Central Arizona
K. Malmos, B. Sullivan
Monday, 16th June

UMC Center Ballroom
8:00-12:00 Symposium 3 - Slightly Deleterious Mutations in Evolution
Organizers: Michael Nachman and Nancy Moran

8:00 265 Slightly Deleterious Mutations in Animal Mitochondrial DNA
*M. Nachman

8:15 266 Slightly Deleterious Mutations in Endosymbiotic Bacteria
*N. Moran

8:30 267 Evolution by Nearly Neutral Mutations
*T. Ohta

9:00 268 Deleterious Alleles in Populations with Fluctuating Sizes
*J. Gillespie

9:30 269 Mitochondrial DNA Mutations, Aging, and Degenerative Diseases
*M. Brown

10:00-10:30 Break

10:30 270 Decline of Fitness in two Panmictic Populations of Drosophila melanogaster Maintained under Relaxed Natural Selection
S.A. Shabalina, L.Y. Yampolsky, *A.S. Kondrashov

11:00 271 Natural Selection and the Population Genetics of "Silent" DNA Mutations in Drosophila
*H. Akashi

11:30 272 Deleterious Mutation Accumulation in the Mitochondrion
*M. Lynch

JILA Auditorium
8:30-10:00 Session 29 - Life Histories and Development
Chair: Chi-hua Chiu

8:30 273 Body-Patterning Genes and the Evolution of Asexual Reproduction and Regeneration in Annelids
*A.E. Bely, G.A. Wray
8:45 274 Bet-Hedging and Sex Specific Differences in the Size at Phase Change in the Bluehead Wrasse, *Thalassoma bifasciatur*
* L. Rogers

9:00 275 Sexual Modes of Modular Animals: Gonochorism, Hermaphroditism, or Both at Once?
* K. Wasson

9:15 276 Genetics of Sex Determination in a Parasiid Wasp
* A. K. Holloway, M. F. Antolin

9:30 277 What Controls the Timing of Ovarian Maturation in Larvally Reproductive Gall Midge (Insecta: Diptera: Cecidomyiidae): Parallelisms or Simple Convergence?
* J. Hodin, L. Riddiford

9:45 278 Spontaneous Facultative Parthenogenesis in Snakes
* G. W. Schuett, P. J. Fernandez, W. F. Gergits, D. Chiszar, H. M. Smith, J. B. Mitton

**

Chemistry 140

8:30-10:00
Session 30 - Molecular Systematics
Chair: Jerome Reiger

8:30 279 The Scaling of the Phylogenetic Estimating Problem
* J. Kim

8:45 280 Comparison of Morphological and Molecular Divergence in the *Anopheles minimus* Complex of Malarial Mosquitoes from Thailand
* R. Sharpe, R. Butlin, R. Harbach

9:00 281 Phylogenetic Signal in the COI and 16S Mitochondrial Genes for Inference of Generic Relationships Among Microgastrine Parasitoid Wasps
* P. Mardulyn, J. B. Whitfield

9:15 282 Phylogeny of the Tachinid Family-Group (Diptera) Based on Mitochondrial DNA
* J. D. Wells, T. Pape, F. A. H. Sperling

9:30 283 Phylogenetic Characterization of Bacterial Endosymbionts of Adelgids and Psyllids (Hemiptera: Sternorrhyncha)
* A. Spaulding, C. D. Von Dohlen

9:45 284 Nuclear Genes for Arthropod Systematics
* J. C. Reiger, J. W. Schultz, C. Mitter

**

CIMES Auditorium

8:30-10:00
Session 31 - Combined-Data Systematics
Chair: Barry Campbell

8:30 285 Morphology Versus Molecules in the Caribbean Boas.
* B. N. Campbell, P. T. Boag

8:45 286 Comparing and Combining Molecular and Morphological Data: Practical Approaches in the Anatini
* K. P. Johnson, M. D. Sorenson
9:00 287 Combined-Data Analysis Can Amplify Phylogenetic Signal: A Computer Simulation Study
*A.D. Yoder, T. Eriksson, M. Donoghue

9:15 288 Evolution of the Chiropteran Hindlimb: A Phylogenetic Perspective Based on a Combined-
Data Analysis of Fossil and Extant Bats
*W.A. Schutt, Jr., J. Geisler, N.B. Simmons

9:30 289 Molecular Phylogenetics of the Carnivorans (Mammalia, Carnivora): Evidence from Intron I
of the Transthyretin Gene
*M. Nedbal, J. Flynn

9:45 290

Fine Arts N141

8:30-10:00 Session 32 - Biogeography
Chair: Cristina Miyaki

8:30 291 Biogeographic Constraints on Patterns of Colonization and Migration in Melanochromis
auratus (Cichlidae) During the Most Recent Inundation of the South-Eastern Basin
of Lake Malawi: An Analysis of Fine Scale Population Structure Using SSR Loci
*J. Markert, P. Danley, M. Arnegard, T. Kocher

8:45 292 Parrot Evolution and Paleogeographic Events: Mitochondrial DNA Evidences
*C.Y. Miyaki, S.R. Matioli, T. Burke, A. Wajnral

9:00 293 Mitochondrial DNA Control-Region Sequences Indicate a Sequential Range Expansion and
Low Current Levels of Gene Flow Among European Populations of Common Chaffinches
(Fringilla coelebs)
*H.D. Marshall, A.J. Baker

9:15 294 Role of the Columbia River Gorge in Shaping Ground Squirrel Phylogeography: Vicariance
or Dispersal Barrier?
*G.J. Kenagy, F.X. Villablanc

9:30 295 MtDNA Variation in Stephen's Kangaroo Rat (Dipodomys stephensi): The Influence of
Landforms
*A.E. Metcalf, L.P. Nunney, B.C. Hyman

9:45 296 Speciation and Phylogeography Within the Dusky Shrew (Sorex monticolus) Species
Complex
*J.R. Demboski, J.A. Cook

UMC Forum

8:30-10:00 Session 33 - Phylogenetic Methodology
Chair: Paul Lewis

8:30 297 Recovering Reticulation in Human Evolution: Trees, Nets, and Polynesian Languages
*R.D. Gray

8:45 298 Evolution of the Rate of Molecular Evolution
*J.L. Thorne, H. Kishino

27
9:00 299 The Consistency of Maximum Likelihood Estimation of Phylogenetic Trees from Nucleotide Sequences
*J.S. Rogers

9:15 300 Estimating Parameters of Mixed-Distribution Models of Among-Site Rate Variation in ML Phylogenetic Analysis Is Difficult, but Does It Matter?
*J. Sullivan, D.L. Swofford

9:30 301 Fast Algorithm for the Maximum Likelihood Method of Phylogenetic Reconstruction
*A. Rodin, W-H Li

9:45 302 A Genetic Algorithm for Inferring Phylogeny
*P. Lewis

**

8:30-10.00
Session 34 - Behavior
Chair: Richard Prum

8:30 303 Phylogeny of the Frog Genus Physalaemus with Implications for Evolution of Call Types in the Group
*M. Holder, D. Cannatella, S. Rand, M. Ryan

8:45 304 The Sensory Basis of Background Color Matching in a Color-Polymorphic Treefrog: Implications for the Evolution of Assortative Mating Within an Interbreeding Population.
*W.H. Wente, J.B. Phillips

9:00 305 Why Birds of a Feather Should Flock Together
*C.W. Benkman, J. Smith, K. Coffey

9:15 306 Hormonal Correlates of Breeding Behavior in Female Eastern Bluebirds: Implications for Alternative Mating Strategies
*N. Buschhaus, P. Gowaty, J. Downhower, J. Harder

*R.O. Prum

9:45 308 Unequal Partitioning of Reproductive and Investment Tasks Between Cooperating Queens in the Fire Ant, Solenopsis invicta, as Revealed by Microsatellites
*G. Bernasconi, M.J. Krieger, L. Keller

**

8:30-10.00
Session 35 - Evolution of Sex and Recombination
Chair: Jack da Silva

8:30 309 Test of Synergistic Interactions Among Deleterious Mutations in Bacteria
*S.F. Elena, R.E. Lenski

8:45 310 Sex Facilitates Adaptation to a Changing Environment: An Experiment with Chlamydomonas
*J. da Silva

9:15 312 Virulence and Infectivity of Microsporidians in Sexual and Parthenogenetic Snails *S.G. Johnson

9:30 313 Multiple B Chromosomes in a Parthenogenetic Hermaphrodite: Lineage Markers or Remnants of Genetic Leakage? *T.F. Sharbel, L.W. Beukeboom, N.K. Michiels

9:45 314

10:00-10:30 Break

10:30-12:00 JILA Auditorium

10:30 315 Evidence for Recent Selection on Codon Usage in Drosophila *R.M. Kliman, A. Eyre-Walker

10:45 316 Molecular Evolution Is Not Male-Driven in Drosophila melanogaster And D. simulans *V.L. Bauer, C.F. Aquadro

11:00 317 A Strand Bias to Non-Neutral Mitochondrial DNA Evolution: Evidence from the CytB and ND5 Genes in Drosophila *L.M. Kann, D.M. Rand

11:15 318 The Hobo Transposable Element Invaded Drosophila melanogaster Twice *I.A. Boussy, M. Itoh

11:30 319 Molecular Evolution of P Elements: Snail's Pace for a Jumping Gene? *J.C. Silva, J. Clark, P.M. O'Grady, M.G. Kidwell

11:45 320 Molecular Evolution in Pheromone Systems in Moths: Pheromone Binding Proteins of the European Corn Borer (Ostrinia nubilalis) *C.S. Willett

10:30-12:00 CIRES Auditorium

10:30 321 Quantitative Genetic Analysis of Seed Dormancy, a Threshold Trait in Collinsia verna (Scrophulariaceae). *D.A. Thiede, S. Kalisz, M. McPeek

11:00 323 The Role of Epistasis in Population Differentiation of Chamaecrista fasciculata: A Natural Field Experiment.
* C.B. Fenster, L.F. Galloway

11:15 324 Components of Variance in an Experimentally Inbred Population of Nemophila menziesii
* D. Byers, F. Shaw, R. Shaw

11:30 325 Between Year Genetic Correlations in the Annual Plant, Nemophila menziesii
* R. Shaw, G.A.J. Platenkamp

11:45 326

**

Chemistry 140

10:30-12:00
Session 38 - Molecular Systematics
Chair: James Danoff-Burg

10:30 327 Quantitative Phylogenetic Analysis of Life-History Evolution in the Bark Beetle Genus Dendroctonus (Coleoptera: Scolytidae).
* S.T. Kelley, B.D. Farrell

10:45 328 Phylogenesis of Host Use and Host Specialization in Papaipema (Lepidoptera: Noctuidae)
* P.Z. Goldstein

11:00 329 Phylogeny of Noctuid Moths (Insecta: Lepidoptera) Inferred from Two Nuclear Genes, EF-1 Alpha and DDC
* A. Mitchell, Q.Q. Fang

11:15 330 Phylogeny of Papilio (Insecta: Lepidoptera)
* M.S. Caterino, F.A.H. Sperling

11:30 331 Utility of Nuclear 18S rDNA in Reconstructing Relationships Among Basal Beetles (Coleoptera: Polyphaga)
* J.A. Danoff-Burg

11:45 332 Evolution of Species-Rich Lineages: Cladogenesis, Biogeography and Sequence Variation in Cicindela Tiger Beetles
* A.P. Vogler, T.G. Barraclough, A. Diogo

**

Fine Arts N141

10:30-12:00
Session 39 - Speciation and Cladogenesis
Chair: Jim Leebens-Mack

10:30 333 Host-Plant Dependent Tradeoffs in the Apple Maggot Fly, Rhagoletis pomonella: The Relationship Between Larval Emergence, Fruit Rot and Allozyme Loci.
* K. Filchak, J.L. Feder, J.B. Roethele, U. Stolz

10:45 334 Host-Plant Associated Fitness Tradeoffs in the Apple Maggot Fly, Rhagoletis pomonella: A Synopsis of the Past, and Perspective for the Future
* J.L. Feder, J.B. Roethele, K. Filchak, U. Stolz

11:00 335 Genomic Structure in the Apple Maggot Fly, Rhagoletis pomonella: Is Inversion Polymorphism Involved in Reducing Effective Gene Flow Between the Host Races?
* J.B. Roethele, J.L. Feder

30
11:15 336 Host Associations and Patterns of Diversification Among Yucca Moth Populations
*J. Leebens-Mack, O. Pellmyr

11:30 337 Reproductive Mode and Speciation: Why We Need Alternatives to the Drosophila Model System
*D.W. Zeh, J.A. Zeh

11:45 338 What Initiates Speciation in Heliconius Butterflies?
*C. Jiggins

**

UMC Forum
10:30-12:00 Session 40 - Macroevolution
Chair: Richard Palmer

10:30 339 The Influence of Phylogenetic Scale in Determining Evolutionary Patterns
*P.A. Zani

10:45 340 Taxonomies and Temporal Patterns of Lineage Diversity: Alternative Simulations
*H. Robeck, C. Mailey, M. Donoghue

11:00 341 Evolution and Development of Flower Symmetry in Asterid Angiosperms
*M. Donoghue, R. Ree, D. Baum

11:15 342 Alternative Evolutionary Routes to Fixed Bilateral Asymmetry: The Ontogenetic Role of Genotype Versus Environment
*A.R. Palmer

11:30 343 Juvenile Delinquency and Clandestine Variation in the Macroevolution of Heart Urchins
*G. Eble

11:45 344 Interpreting Sister-Group Tests of Key Innovation Hypotheses
*A. de Queiroz

**

UMC 235
10:30-12:00 Session 41 - Geographic Variation and Hybrid Zones
Chair: Robert Latta

10:30 345 Microgeographic Patterns of CpDNA Introggression in Carpobrotus (Aizoaceae)
*V.V. Symonds, K.A. Schierenbeck

10:45 346 Influence of Historical and Contemporary Gene Flow Patterns on Geographic Variation in Ponderosa Pine
*R.G. Latta

11:00 347 The Historical Pattern of Gene Flow Among Migratory and Non-Migratory Populations of Prairie Warblers (Aves: Emberizidae)
*C.A. Buerkle

11:15 348 Inferring the Relative Influences of Drift and Gene Flow on Regional Population Structure Via Correlation Analyses
*D. Hutchison
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 11:30 | 349 | What Type of Data Is Best for the Estimation of Migration Rate?
 *P. Beerli |
| 11:45 | 350 | Non-Equilibrium Patterns of Genetic Differentiation Across Partial and Complete Gene Flow Boundaries
 *A. Porter |
| 10:30-12:00 | | UMC 158
 Session 42 - Evolution of Sex and Recombination
 Chair: Shawn Meagher |
| 10:30 | 351 | The Effect of Sex on Fitness in Experimental Yeast Populations
 *C. Zeyl |
| 10:45 | 352 | Evidence for a Cost of Sex in a Freshwater Snail *Potamopyrgus antipodarum*
 *J. Jokela, C.M. Lively, M.F. Dybdahl, J.A. Fox |
| 11:00 | 353 | Fitness Effects of Facultative Parthenogenesis in the Cockroach, *Nauphoeta cinerea*
 *L.S. Corley, A.J. Moore |
| 11:15 | 354 | Sex and the Single Worm: An Examination of the Utility of Outcrossing in the Partially Selfing Nematode, *Caenorhabditis elegans*
 *A. Stewart, P.C. Phillips |
| 11:30 | 355 | Fitness Consequences of a Single Generation of Full-Sib Mating in Wild House Mice (*Mus domesticus*)
 *S. Meagher, W. Potts |
| 11:45 | 356 | Parasitism, Mutation Accumulation and the Maintenance of Sex Under Epistatic Fitness Functions
 S. Howard, *C.M. Lively |
| 12:00-1:30 | | - Lunch
 - ASN Business Meeting (12:30-1:30) - UMC 157
 - UMC Forum
 NIH Grants Workshop
 I.A. Ekstrand (Genetics & Developmental Biology Division) |
| 1:30-5:00 | | UMC Center Ballroom
 Symposium 4 - Systematics and the Evolution of Developmental Patterns
 Organizers: Billie J. Swalla and Andres Collazo |
| 1:30 | 357 | Systematics and Developmental Biology: A Future for Experimental Biology
 *E. Zimmer |
| 2:00 | 358 | Morphological Homology and the Pharyngula Stage
 *A. Collazo |
| 2:30 | 359 | Molecular Approaches to Understanding the Origin and Diversification of Echinoderm Body Architecture
 *G.A. Wray |
3:00-3:30 Break

3:30 360 Developmental Processes as Sources of Characters in Systematics
* R. Desalle

4:00 361 Developmental Regulatory Mechanisms and the Evolution of Arthropod Body Patterns
* S. Carroll

4:30 362 Evolution of the Chordate Body Plan: Lessons from the Urochordate Larvae
B.J. Swalla

**

Fine Arts N141
1:30-3:00 Session 43 - Adaptation and Plasticity
Chair: Kenneth Halama

1:30 363 Adaptive Significance of Territoriality in the Australian Scincid Lizard, Ctenotus fallens
* W.B. Jennings

1:45 364 A Quantitative Study of Background Matching and Alternative Cryptic Defenses Among Populations of the Oregon Tiger Beetle (Cicindela oregona)
* T.D. Schultz

2:00 365 Testing Models of Habitat Selection in Ricefishes
* J. Albert

2:15 366 Morphological Correlates to Habitat Selection in Western Fence Lizards: Evidence for a Resource Polymorphism?
* K.J. Halama

2:30 367 Developmental Plasticity and the Ecology of Body Size in Two Seed Beetles
* C.W. Fox, U.M. Savalli

2:45 368 Genetic and Environmental Components of Differential Hostplant Use in a Specialist Herbivore (Coleoptera: Curculionidae)
* S.L. Solarz, R.M. Newman

**

UMC 235
1:30-3:00 Session 44 - Molecular Evolution
Chair: Jonathan Eisen

1:30 369 Molecular Evolution of Colicin Gene Clusters in E. coli
* Y. Tan, M.A. Riley

1:45 370 Coalescent Approaches to Studying HIV Populations
* A. Rodrigo, G. Learn, J. Felsenstein, J. Mullins

2:00 371 Comparative Study of the Molecular Evolution of HIV-1 Epidemics: A Coalescent Approach
* G. Learn, A. Rodrigo, J. Mullins

33
2:15 372 Riodinid, Lycaenid And Nymphalid Butterflies: Different Rates of DNA Evolution?
D. Campbell

2:30 373 Evolution of DNA Repair Genes and Processes: Comparison of Repair in Bacteria, Archaea,
and Eukaryotes.
*J.A. Eisen, P.C. Hanawalt

2:45 374

Old Main Chapel
1:30-3:00 Session 45 - Ecological Genetics
Chair: William Etges

1:30 375 Inversion Phylogenies and Parallel Population Structures in Cactophilic Drosophila
mojavensis and D. pachea.
*W.J. Etges, W.R. Johnson, G. Huckins, G.A. Duncan, W.B. Heed

1:45 376 The Effect of Queen Number on Queen and Colony Survivorship in the Facultatively
Polygynous Ant Myrmica tahoensis
*J. Evans

2:00 377 A Micro-Evolutionary Study of the Drosophila-Macrocheles System: Fitness Consequences
of Ectoparasitism and Heritability of Resistance
*M. Polak

2:15 378 Analysis of Paternity and Sperm Competition in Dungeness Crab (Cancer magister) Using
Microsatellites
*P.C. Jensen, P. Bentzen

2:30 379 Factors Influencing Host Colonization by the Plant Virus BYDV
*S.K. Remold, A.G. Power

2:45 380

JILA Auditorium
1:30-3:00 Session 46 - Population Genetics
Chair: David Rand

1:30 381 A Prototype Population Genetics Object Database for Animal MtDNA
*J. Neigel

1:45 382 New Software for Measuring Genetic Relatedness and Kinship Patterns in Populations
*K.F. Goodnight

2:00 383 Near Neutrality or Relaxed Selection?: Neutrality Tests of Amino Acid Polymorphism in
Commensal and Non-Commensal Species
*D.M. Rand, L.M. Kann

2:15 384 Sex Linkage Among Genes Controlling Sexually-Selected Traits in Animals
*K. Reinhold

2:30 385 Inbreeding Effective Size: Comparisons Among Complex Life Histories
*B. Milligan, A. Strand

34
2:45 386 Testing Hypotheses About Heterosis Using Meta-Analysis
 *D. Houle

**

1:30-3:00 UMC 157
 Session 47 - Quantitative Genetics
 Chair: Susan Jacobs

1:30 387 Apparent Selection Inferred From Pleiotropic Effects of P-Element Insertions
 *A. Clark

1:45 388 Quantitative Trait Loci for Fluctuating Asymmetry of Quasi-Continuous Skeletal Characters in Mice
 *L.J. Leamy, E.J. Routman, J.M. Cheverud

2:00 389 Variation in Hox Gene Expression in Threespine Stickleback Fish.
 D-G Ahn, *G. Gibson

2:15 390 Evolution of Mandibular Morphology Among Tamarins
 *S.C. Jacobs, J.M. Cheverud

2:30 391 Composite Traits and the G Matrix: Does Ontogeny Matter?
 *J. Reeve

2:45 392 Patterns of Quantitative Trait Variation in *Daphnia arenata*
 *M. Pfender

**

Chemistry 140

1:30-3:00 Session 48 - Molecular Systematics
 Chair: Kevin Omland

1:30 393 Population Structure and Glacial Refugia Inferred from MtDNA Control Region Sequences in the Song Sparrow
 *A.J. Fry, R.M. Zink

1:45 394 Sexual Selection, Hybridization, and Phylogenetics in the Avian Genus *Monacus*
 *R.T. Brumfield, M.J. Braun

2:00 395 MtDNA Sequence Phylogeny for Orioles (*Icterus*): A Framework for Studying Plumage Evolution
 *K.E. Omland, S.M. Lanyon

2:15 396 Phylogenetic Relationships and the Evolution of Migration in the Avian Genus *Muscisaxicola*
 *R.T. Chesser

2:30 397 Birds and Amazonian Headwaters: Molecular Evidence of Genetic Structure
 *J. Bates, J. Haffer

2:45 398 Evolutionary Relationships of the Hawaiian Hawk and Phylogeny of the Genus *Buteo*
 *R.C. Fleischer, P. Cordero, C. McIntosh
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30</td>
<td>C250</td>
<td>The Genetic Basis of Inbreeding Depression in Two Species of Mimulus with Contrasting Mating Systems</td>
<td>*D.E. Carr, M.R. Dudash</td>
</tr>
<tr>
<td>1:45</td>
<td>400</td>
<td>How Much Inbreeding Depression in Mimulus guttatus Is Caused by Mutations of Large Effect?</td>
<td>*J.H. Willis</td>
</tr>
<tr>
<td>2:00</td>
<td>401</td>
<td>Evolutionary Implications of Stigma Closure in Mimulus aurantiacus</td>
<td>*A.E. Fetscher</td>
</tr>
<tr>
<td>2:15</td>
<td>402</td>
<td>Sexual Variation in a Highly Clonal Plant, Decodon verticillatus (Lythraceae)</td>
<td>*M. Dorken, C.G. Eckert</td>
</tr>
<tr>
<td>2:30</td>
<td>403</td>
<td>The Mixed Mating System of the Chestnut Blight Fungus, Cryptomeria parasitica</td>
<td>*R.E. Marra, M.G. Milgroom</td>
</tr>
<tr>
<td>2:45</td>
<td>404</td>
<td>Among-Family Differences in Inbreeding Depression in Gynodioecious Lobelia siphilitica</td>
<td>*P. Mutikainen, L. Delph</td>
</tr>
<tr>
<td>3:00</td>
<td>Break</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>235</td>
<td>UMC 235</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>405</td>
<td>Natural Selection of the Ldh-B Promoter and Coding Region Within and Between Populations of the Teleost, Fundulus heteroclitus</td>
<td>*D.A. Powers, P. Schulte</td>
</tr>
<tr>
<td>3:45</td>
<td>406</td>
<td>Directed Selection on Ldh-B Proximal Promoter</td>
<td>*D.L. Crawford</td>
</tr>
<tr>
<td>4:00</td>
<td>407</td>
<td>Molecular Evolution in an Alternating Environment</td>
<td>*W.D. Crill, J.J. Bull, A. Gulati</td>
</tr>
<tr>
<td>4:15</td>
<td>408</td>
<td>Redundancy, Pleiotropy, and the Shape of Multigene Family Evolution</td>
<td>*M. Ronshaugen, A. Martin</td>
</tr>
<tr>
<td>4:30</td>
<td>409</td>
<td>Correlated Evolution in Proteins</td>
<td>*D. Pollock, W. Taylor</td>
</tr>
<tr>
<td>4:45</td>
<td>410</td>
<td>Phylogenetic Signal and Structural Constraints on the Evolution of Protein-Coding Genes</td>
<td>*C. Griffiths</td>
</tr>
</tbody>
</table>
3:30-5:15 Fine Arts N141
Session 51 - Phylogenetic Methodology
Chair: Michel Milinkovitch

3:30 412 Problems with the Interpretation of Partial Warps as Biological Variables
 *F.J. Rohlff

3:45 413 Why Morphometrics Isn't Special: Coding Quantitative Data for Phylogenetic Analysis
 *D.L. Swiderski, M.L. Zelditch, W.L. Fink

4:00 414 Are Morphometrics and Phylogenetics Incommensurable
 *M.L. Zelditch, W.L. Fink, D.L. Swiderski

4:15 415 Phylogenetic Analysis of Interspecific Polymorphism in Higher-Level Terminal Taxa
 *J.J. Wiens

4:30 416 Matrix Representation as a Means of Combining Phylogenetic Information
 *O.R.P. Bininda-Emonds, H.N. Bryant

4:45 417 Analytical Developments Help to Solve the Whale Phylogeny Controversy
 *M.C. Milinkovitch

5:00 418 Allozyme Data and Phylogenetic Analysis: A Comparison of Coding Methods
 *M.J. Mahoney

Old Main Chapel
3:30-5:00 Session 52 - Coevolution
Chair: Dieter Ebert

3:30 419 Host-Parasite Interactions and Local Adaptation of Two Microparasites of *Daphnia magna*
 *D. Ebert

3:45 420 Parasite Host-Range Evolution: Experimental Analyses of Host-Specific Adaptation and Host-Switching
 *A. Gemmell

4:00 421 A Population Genetic Model for a Host-Pathogen System
 *M.S. Sanchez, M. Asmussen, J. Arnold

4:15 422 Evolution of Host Range in Nematodes Parasitizing *Drosophila*
 J. Jaenike, *S. Perlman

4:30 423 Differential Susceptibility to Parasitism in Two Populations of Pea Aphids
 *R.A. Hufbauer, S. Via

4:45 424 Evolution of Expanded Host Range in Wild Viruses by Recombination Between Strains
 *G.P. Krukonis, F.M. Cohan

JLLA Auditorium
3:30-5:00 Session 53 - Population Genetics
Chair: Michael Purugganan

3:30 426 Temporal Changes in Allele Frequencies in Two Directionally Selected Maize Populations
 *J.A. LaBate, K.R. Lamkey, M. Lee
3:45 427 Genetic Variation at the CAULIFLOWER Locus, an Arabidopsis Floral Homeotic Gene
* M. Purugganan, J. Suddith

4:00 428 The Effective Size of an Age-Structured Population that Reproduces Partially by Selfing
* E. Pollak

4:15 429 DNA Sequence Variation at Glb1: No Evidence of a Bottleneck Associated with the
Domestication of Maize
* H. Hilton, B. Gaut

4:30 430 Quantitative and Molecular Population Genetics at Enzyme Loci In Arabis fecunda and A.
lyrata
* J-Z Lin, T. Mitchell-Olds

4:45 431 Disentangling Pollen from Seed Dispersal: Molecular Genetics of Aquilegia
* A. Strand, B. Milligan

Chemistry 140
3:30-5:15 Session 54 - Molecular Systematics
Chair: Steve O'Kane

3:30 433 Phylogeny of the Family Bignoniaceae Based on CpDNA Sequences of RbcL and NdhF
* R.E. Spangler, R.G. Olmstead

3:45 434 Molecular Evolution and Systematic Implications of Two Non-Coding Chloroplast DNA
Regions in Cyperaceae Tribe Cariceae.
* A.C. Yen, R.G. Olmstead

4:00 435 Phylogenetic Utility of the Nuclear Gene Vicilin in Sterculiaceae
* B.A. Whitlock, D.A. Baum

4:15 436 Testing Assumptions About Sequence Evolution: Implications for Parsimony Analysis
* R.G. Olmstead, P. Reeves, A. Yen

4:30 437 Phylogeny of Apioidae (Apiaceae): A Comparison of Chloroplast Restriction Site Data to
DNA Sequence Data
* G.M. Plunkett, S.R. Downie

4:45 438 A Molecular Systematic Examination of Lesquerella and Physaria (Brassicaceae)
* S.L. O'Kane, Jr.

5:00 439 Phylogenetic History of Narcissus L. (Amaryllidaceae) Based on the Chloroplast Gene NdhF
* S.W. Graham, S.C.H. Barrett

UMC 157
3:30-5:15 Session 55 - Biogeography
Chair: Townsend Peterson

3:30 440 Intraspecific Phylogeography Across the Pt. Conception Biogeographic Boundary
* R.S. Burton

3:45 441 Breaching of the Eastern Pacific Barrier by Genes of the Sea Urchin Echinothrix
* H.A. Lessios, B.D. Kessing
4:00 442 Independent Invasions of Fresh Water: Analysis of the Phylogeny and Physiology of a Cosmopolitan Copepod
*Carol Eunmi Lee

4:15 443 Speciation, Gene Flow and Allopatric Divergence in Australian *Daphnia*
*C. Wilson, P.D.N. Hebert, J. Colbourne

4:30 444 When Distributional Models Fail: Mirroring History, Ecology, and Speciation
*A.T. Peterson, S.L. Egbert, J. Soberón-Mainero

4:45 445 Phylogeography of the American pika (Lagomorpha)
*K. Agnew

5:00 446 Transatlantic Flight: Systematics and Biogeography of the Locust Genus *Schistocerca*
*N.R. Lovejoy, R.G. Harrison, R.F. Chapman, G.A. Sword

Ramaley C250

3:30-5:15
3:30 447 Evolution of Self-Fertilization in Perennials
*M.T. Morgan, D.J. Schoen, T.M. Bataille

3:45 448 Pollination and Late-Acting Self-Incompatibility in *Apocynum cannabinum*
*S. Lipow

4:00 449 Evolutionary Dynamics of Sporophytic Self-Incompatibility Alleles in Plants
*M.H. Schierup, X. Vekemans, F.B. Christiansen

4:15 450 The Evolution of Autogamy in *Arenaria uniflora* (Caryophyllaceae): Reproductive Insurance Against Interspecific Pollination?
*L. Fishman, R. Wyatt

4:30 451 Pollen Transfer Dynamics and the Evolution of Gametophytic Self-Incompatibility
*J. Steinbachs, K. Holsinger

4:45 452 Implications of Selfing and Inbreeding Depression for Plant Colonization of Marginal Habitats
*R. Sherry, C. Galen

5:00 453 Mixed Mating, Gene Flow, and Founder Effects in the Native Hawaiian Colonizer *Odonotusoria chinensis* (Lindsaeaceae)
*T.A. Ranker, C.E.C. Gemmill, P.G. Trapp

UNC East Ballroom

4:30-6:00

454 A Test for Gene Conversion and Its Application to HLA Polymorphism
*T. Wiche, J. Mountain

455 Long Term Evolutionary Dynamics of Gene Substitutions in Populations Undergoing Darwinian Selection
*D.A. Vasco

39
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>Evolution of Reaction Norms: Genotype-Environment Interactions Across Three Light Environments in a Natural Population of Collinsia verna</td>
<td>B.B. Black, S. Kalisz</td>
</tr>
<tr>
<td>458</td>
<td>Density Dependent Selection in Arabidopsis thaliana</td>
<td>L. Strong, L. Dorn, J. Schmitt</td>
</tr>
<tr>
<td>459</td>
<td>Are Genetic Differences in Response to Gibberellic Acid in Impatiens capensis Linked to the Shade Avoidance Response?</td>
<td>S. McGee, K. Donohue, M.S. Heschel, J. Schmitt</td>
</tr>
<tr>
<td>460</td>
<td>Phenotypic Selection on Maximal Aerobic Metabolism of High Altitude Deer Mice</td>
<td>J.P. Hayes, C.S. O'Connor</td>
</tr>
<tr>
<td>461</td>
<td>Phenotypic Responses to Group Selection on Population Size in a Poeciliid Fish</td>
<td>C. Baer</td>
</tr>
<tr>
<td>462</td>
<td>Does Pleiotropy or Selection Explain Ubiquitous Colicin Resistance in Natural Populations of Escherichia coli?</td>
<td>M. Feldgarden, M.A. Riley</td>
</tr>
<tr>
<td>463</td>
<td>Individual Variation in Reproductive Performance in Plants: Effects of Herbivory</td>
<td>J. Leverich</td>
</tr>
<tr>
<td>464</td>
<td>Environmental Influence on the Expression of a Body-Patterning Gene in Sea Urchins</td>
<td>L. Issel-Tarver, C. Lowe, G. Wray</td>
</tr>
<tr>
<td>465</td>
<td>The Ontogeny of Sexual Dimorphism in Some Chironomids (Diptera: Chironomidae)</td>
<td>J.K. Cooper</td>
</tr>
<tr>
<td>466</td>
<td>Virulence and Transmission of a Digenetic Trematode (Echinostoma caproni) Infecting a Molluscan Intermediate Host (Biomphalaria glabrata)</td>
<td>A.L. Graham</td>
</tr>
<tr>
<td>467</td>
<td>The Evolution of Sexual Dimorphism in Neotropical Moths</td>
<td>D.A. Wiggins, D.H. Janzen</td>
</tr>
<tr>
<td>468</td>
<td>A Model for Understanding Sexual Role Reversal Based on Bateman's Principle</td>
<td>P.D. Lorch</td>
</tr>
<tr>
<td>469</td>
<td>A Model of the Interaction Between "Good Genes" and Material Benefits</td>
<td>L.F. Bussiere</td>
</tr>
<tr>
<td>470</td>
<td>Reinforcement of Threespine Stickleback Mate Choice: Sympathy Breeds Contempt</td>
<td>H.D. Rundle, D. Schluter</td>
</tr>
<tr>
<td>471</td>
<td>Adaptation and Speciation in Neochlamisus Leaf Beetles: An Integrated Approach</td>
<td>D.J. Funk</td>
</tr>
<tr>
<td>473</td>
<td>Documenting the History of the Speciation of Rhagoletis pomonella and R. zephyria (Diptera: Tephritidae)</td>
<td>J. Smith, G. Bush</td>
</tr>
</tbody>
</table>
Niche Differentiation Across the Big Sagebrush Hybrid Zone in Utah
*H. Wang

An Integrative Phylogenetic Approach to the Evolution of Body Size in the Anolis roquet Group of the Southern Lesser Antilles, West Indies
*N. Giannasi, R.S. Thorpe, A. Malhotra

Gene Flow Between Chromosomal Races of House Mice Inferred from Microsatellite Alleles
*C.J. Hamus, M.W. Nachman

Molecular Evolution of Enzyme Loci in the Plant Genus Leavenworthia
*F. Liu, D. Charlesworth, L. Zhang

A Mosaic Hybrid Zone Between Grasshoppers of the Biguttulus Group of Chorthippus in Northern Spain
*J. Bridle, R. Bailey, R. Butlin, C. Thomas

Conservative Evolution of Olfactory Receptor Genes Expressed in Mammalian Testis
A. Branscomb, *J. Seger

Sequence Variation in Nuclear Introns Studied Using SSCP Analysis
*B.C. Congdon, D.A. Harrison, M.G. Kidd, V.L. Friesen

Rapid Copy Number Evolution of the Sex-Determining Gene, Sry, in New World Rodents (Genus Akodon)
*H.E. Hockstra, S.V. Edwards

Conservation of Both Molecular and Developmental Aspects of TGF-Beta Signaling Between Drosophila and Vertebrates

Gamma-Globin Gene Evolution and Expression in New World Monkeys (Platyrrhini, Primates)
*C-H Chiu, M. Goodman

Heterosis in the Earthworm Eisenia fetida andrei: Effects of Coarse-Grained Environmental Heterogeneity
*T.C. McElroy, W.J. Diehl

Heterosis in the Earthworm Eisenia fetida andrei: Effects of Fine-Grained Environmental Heterogeneity
*W.J. Diehl, D.E. Hart

VNTRs, IBMs, RATS and RAM: A Spatially Explicit Model of Gene Flow in Fragmented Landscapes
*C.E. Jordan, E.K. Steinberg

Intergenomic Coadaptation: Coevolution of Nuclear and Mitochondrial Genes Involved in Cytochrome C Oxidation and COX Activity
*P.D. Rawson, R.S. Burton

The Community-Level Implications of Plastic Invaders
*L. Hartt
489 Interspecific Competition Between *Hetagonovstilum minense* and *Cotesia flavipes*, Parasitoids of Sugarcane Borer
E. Weir, L. Sagarzazu

490 Frequency and Distribution of t-Haplotypes in the House Mice (*M. m. castaneus*) in Taiwan
S-W Huang, K.G. Ardlie, F-H Yew, H-T Yu

491 Genetic Variation in the Grass Shrimp *Palaemonetes paludosus* from the Florida Everglades
A. Quinones, J. Trexler, T. Turner

493 Phylogeny of the Selaginellaceae and Variation in the Chloroplast Gene RbcL
P. Korall, P. Kenrick

494 Molecular Population Genetics of G6PD in Humans
S.M. Peterson, M.W. Nachman

495 MHC Sequence Variation in the Northern Elephant Seal from the Southern California Channel Islands
D. Weber, B. Stewart, N. Lehman

496 Genetic Basis of Plasticity for Flowering Date in *Arabidopsis*
D. Stratton

497 Quantitative Genetics and the Persistence of Environmental Effects in Clonally Propagated Organisms
K. Schwaegerle

498 Software for the Analysis of Covariance Matrices and Quantitative Genetic Data Using Resampling Methods
P.C. Phillips

499 Molecular Systematics of the Old World Monkeys (Cercopithecidae): Evidence from Gamma-Globin Nucleotide Sequences
S.L. Page, C-H Chiu, M. Goodman

500 Apparent Rates of Morphological Evolution and Genotype-Environment Interactions in the Mediterranean Fruit Fly, *Ceratitis capitata*, in Hawaii
D. Foote

501 Molecular Phylogeny of *Gryllus* spp. Based on Cytochrome B and Nuclear rDNA Sequences
M. Sutherlin, R. Bromley, H. Yuan, A. Duhachek, D. Siegel-Causey, A. Zera

502 Phylogeny of the Opilionid Subfamilies (Insecta: Hymenoptera: Ichneumonidae) Inferred from Mitochondrial DNA Sequences
K.I. Suh, J.B. Whitfield

503 Ribosomal RNA and Phylogeny of the Ascaridoidea (Nemata: Secernentea)
S.A. Nadler, D.S.S. Hudspeth

504 Recent Radiation of New Zealand Alpine Cicadas (*Maoricicada*)
T. Buckley, P. Arensburger, *G. Chambers, C. Simon*

505 Molecular Systematics of *Liposyphla* Using 12S rRNA and NADH2 Sequences
G.L. Emerson, M.W. Allard
A Cladistic Analysis of Hemichordate Morphology
*C.B. Cameron

Phylogeny of the Lower Brachycera (Insecta: Diptera): Combined and Separate Analyses of Multiple Datasets
*B.M. Wiegmann, D. Yeates, S-C Tsaur

Phylogeny of Scaphopoda Inferred from Morphological and COI MtDNA Sequence Data
*P. Reynolds

Phylogeography of *Nesotes conformis* as Revealed by MtDNA Cytochrome Oxidase II Sequence Data
*D.J. Rees, B.C. Emerson, P. Oromi, G.M. Hewitt

Phylogeography of the Sagebrush Lizard, *Sceloporus graciosus*, in California: Preliminary Results from a Combined Data Set.
*L.J. Frabotta

How to Validate Phylogenetic Trees? A Stepwise Procedure
*F-J Lapointe

Deep Phylogenetic Splits in Neotropical Vertebrate Taxa?
S.C. Lougheed, *A.A. Chek, P.T. Boag, P. Handford, J.P. Bogart

Ecological Correlates of Reproductive Success in the Burying Beetle, *Nicrophorus investigator*
*R.J. Smith

Evolutionary Patterns and Correlates of Venom Variation in Hawaiian *Tetragnatha* (Araneae)
*G. Binford

Maternal Effects in Urchins: Vitellogenin Gene Expression and Developmental Mode
*J. Villinski, E. Popodi, M. Byrne, R. Raff

Evolution of the Reproductive System of *Erythroxyllum havanense*, a Heterostylov Plant
*C.A. Dominguez, L. Eguiarte

Timing Is Everything: Pollination and Stigma Receptivity in *Silene latifolia*
*H. Young, L. Gravitz

Maintenance of Male Sterility in Gynodioecious Populations of *Geranium richardsonii*
*C. Williams

Conservation Genetics of the Threatened Freshwater Mussel, *Margaritifera hembeli*
*J.P. Currie, K. Brown, D. Foltz

The Genetic Impacts of Tropical Forest Fragmentation on Plant Mating Patterns and Population Structure
*M. Hamilton

Partial Sequence of a Demosponge Mitochondrial Genome
*R.F. Watkins
Kin Selection and Dynamic Optimization in Evolutionary Biology
*T. Day, P.D. Taylor

Population Structure of the Vector of Bird Malaria in Hawaii, *Culex quinquefasciatus:
Preliminary Data from Microsatellite and MtDNA Variation
*D.M. Fonseca, C.T. Atkinson, R.C. Fleischer

6:00-7:45 Barbecue - (Williams Village)

Macky Auditorium
8:00-9:00
ASN Presidential Address:
The Ecology of Informational Advantage: Transforming Natural History into an Economic
View of Evolution
*G. Vermeij

Tuesday, 17th June

UMC Center Ballroom
8:30-11:30 Symposium 5 - ASN Young Investigators Symposium
Organizer: Tim Wootton

8:30 529 Estimating Genomic Mutation Parameters in Natural Populations
 *H-W Deng

9:00 530 Quantitative Trait Evolution in Partially Self-Fertilizing Populations
 *J. Kelly

9:30 531 Some Implications of Direct Positive Interactions for Community Species Diversity
 *S. Hacker

10:00-10:30 Break

10:30 532 Beetle Development Limits Male Horn Evolution: Perturbation Experiments Reveal
 Allocation Tradeoffs Between Horns and Eyes
 *D.J. Emlen

11:00 533 The Genetics of Inbreeding Depression: Implications for Conservation
 *L. Pray

UMC 157
8:30-10:00 Session 57 - Evolutionary Theory
Chair: Daphne Fairbairn

8:30 535 The macroevolutionary consequences of sexual conflict in the water strider
 genus *Rheumatobates* (Heteroptera: Gerridae)
 *K. Westlake

8:45 536 A Model of the Effects of Gene Flow on Reinforcement
 *M. Servedio, M. Kirkpatrick
9:00 537 The Evolution and Adaptive Significance of Sexual Size Dimorphism in the Water Strider, *Aquarius remigis*
* D. Fairbairn, R. Preziosi, J. Reeve

9:15 538 Multi-Locus Data, Migration, and Hybrid Zones
*M.E. Orive, N.H. Barton

9:30 539 Niche Evolution in "Black-Hole" Sink Populations Maintained by Recurrent Immigration
*R. Gomulkiewicz, R.D. Holt, M. Barfield

9:45 540 The Maintenance of Genetic Variance in a Subdivided Population
*M. Whitlock

**

UMC 235

8:30-10:00
Session 58 - Life Histories and Development
Chair: Anthony Zera

8:30 541 Fitness Consequences of Overwintering: The Cost of Diapause in the Pitcher-Plant Mosquito, *Wyeomyia smithii*
*W.E. Bradshaw, P.A. Armbruster, C.M. Holzapfel

8:45 542 Physiology of Life-History Trade-Offs: Characterization of a Hormonally-Induced Life-History Trade-Off in *Gryllus assimilis*
*A.J. Zera

9:00 543 On the Virtue of Being the First Born: The Influence of Date of Birth on Components of Fitness in the Mosquitofish, *Gambusia affinis*
*D. Reznick, E. Schultz, S. Morey

9:15 544 Fitness Consequences of Alternative Life Histories in Tiger Salamanders
*H. Whitman

9:30 545 Physiologically Structured, Individual Based Models, Genetic Algorithms and Tradeoffs Between Offspring Size and Number
*P.H. Niewiarowski, A.E. Dunham

9:45 546 Potential Adaptive Variation in the Sex-Ratio of the Least Killifish, *Heterandria formosa*
*J. Leips, J. Travis

**

UMC Forum

8:30-10:00
Session 59 - Sexual Selection
Chair: David Haskell

8:30 547 Color Polymorphism in the Bioluminescent Click Beetle, *Pyrophorus plagiophthalanus*: Measures of Spectral Emission and Absorbance
*U. Stolz, J.L. Feder, K. Filchak

8:45 548 Genetic Basis of Female Mate Preferences in an Ultrasonic Moth (*Achroia grisella*, Pyralidae, Lepidoptera)
*Y. Jang, M. Greenfield

45
9:00 549 Evolution of Sexual Dichromatism in Birds: The Roles of Carotenoid- Versus Melarin-Based Plumage Coloration
* A. Badyaev, G. Hill

9:15 550 The Darwin-Wallace Debate Revisited: Can Natural Selection on Female Plumage Color Explain Interspecific Variation in Avian Sexual Dichromatism?
* D. Haskell

9:30 551 Dimorphic Males in an Amphipod: Do Juveniles with High Growth Rates Choose to Be Minors?
* J.P. Kurdziel, J.S. Levinton

9:45 552 Evolution of Novel Wing Morphology for Sound Production by Sexual Selection in Machaeroporus (Aves)
* K.S. Bostwick, R.O. Prum

JILA Auditorium

8:30-10:00 Session 60 - Molecular Evolution
Chair: Frank Cipriano

8:30 553 Microsatellites in Genus Apodemus with Implications to Multiple Paternity and Evolution of Repeat Flanking Sequences

8:45 554 6000 Miles Across the Pacific: Microsatellite and MtDNA Variation in Dolphins from Peru and New Zealand
* F. Cipriano, K. Ingram, S.R. Palumbi

9:00 555 A Test for Heterogeneity of Levels of Microsatellite Variation
* J.K. Pritchard

9:15 556 Fast Approximate Likelihood Calculations for Microsatellites, Mostly Within Species
* J. Felsenstein, P. Beerli

9:30 557 Microbial Microsatellites: Genome Structure, Stability and Evolution
* D. Field, C. Wills

9:45 558 Tests for Selection at MtDNA Loci in Natural Populations of Western Minnow (Genus Gilia)
* A.S. Gerber, C.A. Tibbetts, T.E. Dowling

Chemistry 140

8:30-10:00 Session 61 - Molecular Systematics
Chair: Doug Eernisse

8:30 559 Mitochondrial DNA Evolution in North American Bufonids
* A.M. Goebel

8:45 560 Molecular Systematics and Biogeography of Caribbean Rock Iguanas (Cyclura)

9:00 561 Molecular Systematics of the Anolis Lizards of the Southern Lesser Antilles
* D. Creer, K. de Queiroz, T. Jackman, J. Losos, A. Larson
Phylogenetic Relationships Among Phrynosomatid Sand Lizards as Inferred from Mitochondrial DNA Sequences
*J. Wilgenbusch, K. de Queiroz

A Molecular Analysis of Chelicerate Head Development and Arthropod Phylogeny
M.J. Telford, *R.H. Thomas

Why Have Previous 18S rRNA Analyses Not Found a Monophyletic Mollusca?
*D.J. Eernisse

CIRES Auditorium
Session 62 - Macroevolution
Chair: Brian Farrell

A Critical Evaluation of the Reality of the Cambrian Explosion Based on 18S rRNA Data
E. Aboulheif, R. Zardoya, *A. Meyer

Modeling the Cambrian Explosion: Recovering Trees Successfully from Simulated Sequence Data
*J. Levinton, L. Dubb, J. Felsenstein, G. Wray

K-T Mass Extinction, Explosive Paleocene Diversification, and Cenozoic Diversity Equilibrium in Mammals: The Fossil Record Says Yes
*J. Alroy

Haldane's Conundrum Explained: Why There Are so Many Beetles
*B.D. Farrell

Morphological Evolution of the Fishes of the Genus Bryconops (Teleostei: Characidae)
*B. Chernoff, A. Machado-Allison

Adaptive Radiation in Spiders: The Role of Key Innovation in the Orb Weaving Clade
*J.E. Bond, B.D. Opell

Fine Arts N141
Session 63 - Behavior
Chair: Hugh Dingle

The Association of Activity Level, Burst Speed, and Caudal Morphology with Vulnerability to Predation in Two Species of Salamanders
*C.S. Wells, R.N. Harris, S.K. Babcock

Pathogen Transmission as a Selective Force Against Cannibalism
*D. Pfennig

Evolved Migration Syndromes: Migration Is Not Dispersal and Vice-Versa
*H. Dingle

A Theoretical Analysis of Costly Signaling Among Relatives
*C.T. Bergstrom, M. Lachmann

47
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30</td>
<td>575</td>
<td>Maternal Effects on Offspring Fitness in the Strawberry Arrow Poison Frog, Dendrobates pumilio</td>
<td>*M. Maple</td>
</tr>
<tr>
<td>9:45</td>
<td>576</td>
<td>Correlates of Relatedness in the Western Harvester Ant, Pogonomyrmex occidentalis</td>
<td>*B.J. Cole, D.C. Wiernasz</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-12:00</td>
<td>UMC 157</td>
<td>Session 64 - Adaptation and Plasticity</td>
<td>Chair: Leonard Nunney</td>
</tr>
<tr>
<td>10:30</td>
<td>577</td>
<td>Local Adaptation Despite Plasticity in a Marine Invertebrate</td>
<td>*D. Brumbaugh</td>
</tr>
<tr>
<td>10:45</td>
<td>578</td>
<td>Maternal Death Relaxes Developmental Inhibition in Nymphal Aphid Defenders</td>
<td>*J.H. Withgott, D.K. Abbot, N.A. Moran</td>
</tr>
<tr>
<td>11:00</td>
<td>579</td>
<td>The Effect of Temperature on Fecundity in Female Drosophila melanogaster: Evidence for Adaptive Plasticity</td>
<td>*L. Nunney</td>
</tr>
<tr>
<td>11:15</td>
<td>580</td>
<td>Host Specificity and Mode of Transmission: Their Role in Parasitic Nematode Speciation</td>
<td>*S.N. Bennett, M.L. Adamson</td>
</tr>
<tr>
<td>11:30</td>
<td>581</td>
<td>When Do Specialists and Generalists Evolve? Insights from Experiments with Chlamydomonas</td>
<td>*R. Kassen, G. Bell</td>
</tr>
<tr>
<td>11:45</td>
<td>582</td>
<td>Diet- and Temperature-Induced Norms of Reaction for Size and Age in Grasshoppers</td>
<td>*D.B. Thompson</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-12:00</td>
<td>UMC 235</td>
<td>Session 65 - Life Histories and Adaptation</td>
<td>Chair: Steven Orzack</td>
</tr>
<tr>
<td>10:30</td>
<td>583</td>
<td>Demographic Effects of Size and Inter-Colony Fusion in a Reef Coral</td>
<td>*D.B. Carlon</td>
</tr>
<tr>
<td>10:45</td>
<td>584</td>
<td>Foundations of Gregariousness: A Dispersal Polyphenism Among the Larvae of a Marine Invertebrate</td>
<td>*R.J. Toonen, J.R. Pawlik</td>
</tr>
<tr>
<td>11:00</td>
<td>585</td>
<td>Bateman's Principle and Gamete Evolution in Sperm-Limited Sea Urchins</td>
<td>*D.R. Levitan</td>
</tr>
<tr>
<td>11:15</td>
<td>586</td>
<td>Reproductive Effort in Variable Environments or Environmental Variation Is for the Birds</td>
<td>*S. Orzack, S. Tuljapurkar</td>
</tr>
<tr>
<td>11:30</td>
<td>587</td>
<td>Divergence in Life History and Architecture Between Grazed and Ungrazed Populations of Silene gallica</td>
<td>*D.S. Posner, M.L. Stanton</td>
</tr>
</tbody>
</table>
Size Variation in Reproductives and Reproductive Allocation in the Western Harvester Ant, *Pogonomyrmex occidentalis*
D.C. Wiernasz, B.J. Cole

UMC Forum
10:30-12:00
Session 66 - Sexual Selection
Chair: Daniel Promislow

Sexual Selection in the Western Harvester Ant, *Pogonomyrmex occidentalis*
A.J. Abell, B.J. Cole, D.C. Wiernasz

Sexual Selection and the Fitness Consequences of Male Body Size in a Seed Beetle
U. Savalli, C. Fox

Sexual Differences in Response to Larval Food Stress in Katydids: Do Females Conserve Characters Important to Sexual Competition? (Orthoptera: Tettigoniidae)
D. Gwynne

Fitness Consequences of Sexual Selection in *Drosophila*: Artificial Selection Experiments
D. Promislow, L.Pearse

Effects of Sex Ratio Manipulation on Female Fitness in *Drosophila melanogaster*
K.A. McKeen

Sperm Transfer and Copulation Duration in *Drosophila silvestris* and *Drosophila heteroneura*
M. DeAngelis

JILA Auditorium
10:30-12:00
Session 67 - Molecular Evolution
Chair: Brandon Gaut

Molecular Evolution and Expression of Anthocyanin Multigene Families in *Ipomoea purpurea* (Morning Glory)
B.C. McCaig, M.L. Durbin, M.T. Clegg

Molecular Evolution of C1, a Regulatory Gene in the Anthocyanin Pathway, in the Grass Family
V.M. Oberholzer, M.T. Clegg

DNA Sequence Evidence for the Segmental Allotetraploid Origin of Maize
B.S. Gaut, J.F. Doebley

Molecular Evolution of Three Noncoding Regions in Angiosperms
E. Friar, J.M. Porter

Evolution of Orthologous and Homoeologous Nuclear Sequences from Diploid and Allopolyploid Cottons
R. Cronn, J.F. Wendel

Evolution in Group II Introns in Chloroplasts as Shown by the Rpl16 Intron
S. Dickie, S. Kelchner, R. Wallace, J. Wendel
Cires Auditorium
10:30-12:00
Session 68 - Ecological Genetics
Chair: Michael Turelli

10:30 601
Changing Genetic Structure of a Bur Oak Savannah: Microsatellite Analysis of Adults and Saplings
*M.V. Ashley, B.D. Dow

10:45 602
Complex Inheritance of Plant Size and Fitness in Ipomoea purpurea (Common Morning Glory)
*R. Miller, D. Higdon, M. Rausher, E. Simms

11:00 603
Protected Polymorphism for Flower Color in Linanthus parryae: Wright Sings the Blues
*M. Turelli

11:15 604
Genetic Constraints: An Experimental Approach Using Induced Mutations in Arabidopsis thaliana
*M.D. Camara, N. Turner, M. Pigliucci

11:30 605
Fingerprint-Based Spatial Genetic Tests for Isolation by Distance and Local Adaptation in the Coastal Plant Limonium carolinianum
*M. Hamilton

Chemistry 140
10:30-12:00
Session 69 - Molecular Systematics
Chair: Carey Krajewski

10:30 607
Improved Resolution of Crane Phylogeny from Combined Cytochrome b and ND6 Sequences
*M. Fain, C. Krajewski

10:45 608
Molecular Systematics and Evolution of the Honeyeaters (Passeriformes: Meliphagidae)
*A.C. Driskell

11:00 609
Multigene Analysis of Phylogeny Within Dasyurid Marsupials
*C. Krajewski, M. Westerman

11:15 610
Comparisons of MtDNA Gene Regions in Resolving Avian Species Relationships
*G. Voelker, S.V. Edwards

11:30 611
A Multiple Gene Perspective on the Phylogeny of the Avian Genus Tachyphonus
*K.J. Burns

11:45 612
Fibrinogen Introns and Avian Systematics
*S. Hackett, F.K. Barker, E. Grismer

Fine Arts N141
10:30-12:00
Session 70 - Conservation Genetics
Chair: Laura Lundquist
<table>
<thead>
<tr>
<th>Time</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30</td>
<td>613</td>
</tr>
</tbody>
</table>
| | Patterns of Geographic Genetic Differentiation and Lack of Inbreeding Depression in a Rare Perennial
* D. Leeper, T. Mitchell-Olds |
| 10:45 | 614 |
| | Genetic Consequences of Extensive Clonality in the Endangered Shrub *Haloragodendron lucasii*
* M. Sydes, R. Peakall |
| 11:00 | 615 |
| | The Role of Genetic Variation in Stress Tolerance and Population Persistence: An Experimental Study with *Brassica rapa*
* C. A. Wise, Y. B. Linhart, T. Ranker |
| 11:15 | 616 |
| | Extraordinary Genetic Variation in a Narrow Endemic Annual Plant Species
* N. J. Ferguson, N. C. Ellstrand, R. Whitkus |
| 11:30 | 617 |
| 11:45 | 618 |
| 12:00-1:30 | - Lunch |
| | - SSB Business Meeting (12:30-1:30) - UMC 157 |
| | - UMC Forum
NSF Population Biology: Open Discussion - The role of model organisms in research in population biology
L. Lyons & M. Courtney (Population Biology) |
| 1:30-5:00 | Chemistry 140 |
| 1:30 | 619 |
| | Population Genetics and Genealogical Properties of Self-Recognition Systems
* X. Vekemans |
| 2:00 | 620 |
| | Allelic Genealogy and Its Application to HLA DNA Sequence Data
* N. Takahata |
| 2:30 | 621 |
| | Evolutionary Process and the Structure of Genealogies among Self-Incompatibility Alleles in Flowering Plants
* M. Uyenoyama |
| 3:00-3:30 | Break |
| 3:30 | 622 |
| | Evolution in the Extreme: Variation at Fungal Mating Loci
* G. May |
| 4:00 | 623 |
| | The Spawning Game: Evolution of Gamete Recognition Loci in Free-Spawning Marine Species
* S. Palumbi |
| 4:30 | 624 |
| | Sequence Divergence of Mating Incompatibility Genes at the Population Level
* A. Richman |
1:30-3:00 UMC 157
Session 71 - Hybridization and Sexual Isolation
Chair: Daniel Howard
1:30 625 The Effect of DNA Sequence Divergence on Sexual Isolation in Bacteria
*J. Majewski, F. Cohan
1:45 626 Reproductive Isolation and Divergence of Gamete Recognition Proteins Between Allopatric Versus Sympatric Species of Tropical Sea Urchins.
*M.A. McCartney
2:00 627 Conspecific Sperm Precedence Is an Effective Barrier To Hybridization Between Closely Related Species
*D.J. Howard, P.G. Gregory, J. Chu
2:15 628 Courtship Song & Sexual Isolation in Drosophila pseudoobscura and D. persimilis
*M.A.F. Noor, C.F. Aquadro
2:30 629 Haldane’s Rule in the Fruit Fly Anastrepha: Why so Different from Drosophila?
*P. Dos Santos, S.R. Matioli
2:45 630 Head Width, a Sexually Selected Trait in Drosophila heteroneura, Is Not Used by Females in Species Recognition
*C.R.B. Boake, D.K. Andreadis

--

1:30-5:00 UMC 235
Session 72 - Adaptation and Plasticity
Chair: Mark Belk
1:30 631 Predator Induced Temporary Colour Changes in Tadpoles of the European Waterfrog (Rana esculenta)
*C. Rauter
1:45 632 Morphological Evolution of Utah Chub, Gila Atraria, in Populations with and Without Predation from Cutthroat Trout, Oncorhynchus clarki
*M.C. Belk, M.A. Nannini, C.Walser, J.B. Johnson
2:00 633 Evidence For Phenotypic Selection on Escape Performance in Natural Populations of Guppies
*A.J. Cullum, A.F. Bennett
2:15 634 Can Predation History or Locomotor Phenotype Predict Predator Avoidance Success? An Experimental Test Among Guppy (Poecilia reticulata) Populations of Trinidad
*S. O'Steen, A.F. Bennett
2:30 635 Ontogenetic Reaction Norms: Predator Induced Morphological Shape Change in a Dragonfly Larva
*F. Johansson
2:45 636 Why Be a Generalist? Insights from a Lycænid Butterfly with Multiple Ant Associates
*A.M. Fraser

52
JILA Auditorium
1:30-3:00
Session 73 - Population Genetics
Chair: Craig Moritz

1:30 637 Segregating Sites in Wright's Island Model
*J.R. Wakeley

1:45 638 Molecular Population Genetics of the Cane Toad (*Bufo marinus*)
*C. Moritz

2:00 639 Effects of Variable Population Size and Heterogenous Mutation Rate on Estimation of Population Genetic Parameters
*D.A. Vasco, H-W Deng, X-X Fu

2:15 640 Tracking Geographic Variation in Cave Swallows (*Hirundo fulva*) Using Microsatellites
*J.J. Kirchman

2:30 641 Polymorphism and Divergence at Mitochondrial Genes in South American Rodents
*P. Kennedy, M.W. Nachman

2:45 642 Gene Flow in the Squid, *Loligo pealei*, in the Atlantic Ocean and the Northern Gulf of Mexico
*S.W. Herke, D.W. Foltz

Old Main Chapel
1:30-3:00
Session 74 - Molecular Systematics
Chair: Ken Halanych

1:30 643 Issues and Answers in the Molecular Phylogeny of the Crustacea
*T. Spears, L.G. Abele

1:45 644 Vestimentiferan and Pogonophoran Origins Based on Nuclear Ribosomal Genes; An Assessment of Phylogenetic Signal.
*K.M. Halanych, R.C. Vrijenhoek

2:00 645 Phylogenetic Relationships Within the Anthozoa (Phylum Cnidaria) as Inferred from 18S rDNA Sequences Obtained from Recent Specimens and Historical Museum Collections
*E.A. Berntson, F.M. Bayer

2:15 646 Molecular Diversity of Zoanthellae in Octocorals
*T.L. Goulet, M.A. Coffroth

2:30 647 A New Hypothesis for the Evolution of Scleractinian Corals Based on Mitochondrial 16S and Nuclear 28S Ribosomal RNA
*S.L. Romano

2:45 648 Use of Ribosomal ITS Sequences to Resolve Intragenic Relationships in the Soft Coral Genus *Alcyonium*
*C.S. McFadden

Ramaley C250
1:30-3:00
Session 75 - Combined-Data Systematics
Chair: Bradley Shaffer
1:30 649 Between Scylla and Carvopteris: Struggling with the Linnaean Strait Jacket
*P.D. Cantino, R.G. Olmstead, S.J. Wagstaff

1:45 650 Tests of Turtle Phylogeny: The Effect of Fossils on Phylogenetic Stability
*H.B. Shaffer, P. Meylan, M.L. McKnight

2:00 651 Does Total Evidence Reweave or Unravel the Avian "Tapestry"? 1. Morphology Versus Molecules
*P. Beresford, J. Cracraft

2:15 652 Does Total Evidence Reweave or Unravel the Avian "Tapestry"? 2. Morphology and Molecules
*J. Cracraft, S. Stanley, P. Beresford, A. Espinosa, J. Feinstein

2:30 653 Bird Vocalizations as Phylogenetic Characters: A Heron Example
K.G. McCracken, *F.H. Sheldon

2:45 654 Expected Divergence Times Within Crocodylia from Molecules and Fossils: Conflict and Congruence
*C. Brochu

*UMC 158

1:30-3:00 Session 76 - Comparative Method
Chair: David Ackerly

1:30 655 Phrynosoma Morphology and Diet: Re-Evaluating the Relationship Using Independent Contrasts.
*W.L. Hodges

1:45 656 Ontogeny and Phylogeny in Swordtail Fishes: Understanding Growth Patterns in a Phylogenetic Context.
*J.M. Marcus, A. McCure

2:00 657 Prey Capture Thread Stickiness and the Evolution of Orb Weaving Spiders: A Comparative Approach
*B.D. Opell

2:15 658 Phylogenetic Tests of Natural Selection Using Catostomid Gill Rakers
*P. Willink

2:30 659 Community Assembly and Comparative Methods
*D. Ackerly

2:45 660 Increasing Statistical Complexity in Comparative Studies: Is It Always Worth It?
*E. Abouheif

*UMC Forum

1:30-3:00 Session 77 - Conservation Genetics
Chair: Francis Villablanc

1:30 661 Genetic Identity of the Invasive Ruffe Gymnocephalus cernuus (Teleostei: Percidae) in the Great Lakes: DNA Sequence Evidence for a Southern European Origin and a "Cryptic" Species
*C.A. Stepiec, A.K. Dillon
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors/Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:45</td>
<td>662</td>
<td>Microsatellites, Allozymes and Conservation Genetics of the White Sands Pupfish</td>
<td>C.A. Stockwell, M. Mulvey, A.G. Jones</td>
</tr>
<tr>
<td>2:00</td>
<td>663</td>
<td>Reproductive Success of Captively-Reared, Naturally Spawning Coho Salmon</td>
<td>L. Park, B. Berejikian, J. Hard, E. Lahood</td>
</tr>
<tr>
<td>2:15</td>
<td>664</td>
<td>Assessing the Utility of Genetic Markers as Indicators of Habitat Fragmentation: Lessons from Real and Virtual Pocket Gophers</td>
<td>E. Steinberg, C. Jordan</td>
</tr>
<tr>
<td>2:30</td>
<td>665</td>
<td>Paraphyletic Clades and the Conservation Genetics of Black-Footed Ferrets</td>
<td>F. Villablanca</td>
</tr>
<tr>
<td>2:45</td>
<td>666</td>
<td>Can Molecular Genetics Assist Species Recovery Programmes? Arabian Oryx as a Case Study</td>
<td>T. Marshall</td>
</tr>
<tr>
<td></td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00-3:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30-5:15</td>
<td></td>
<td>UMC 235</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>667</td>
<td>Why Is There Not a Positive Relationship Between Phenotypic Plasticity and Environmental Variability? A Test of Three Hypotheses</td>
<td>G. Davidowitz</td>
</tr>
<tr>
<td>3:45</td>
<td>668</td>
<td>A Theory of Developmental Stability</td>
<td>J.H. Graham, D.C. Freeman, J.M. Emlen</td>
</tr>
<tr>
<td>4:00</td>
<td>669</td>
<td>A Selection Model for Plasticity in Coarse-Grained Environments in Its Simplest Form</td>
<td>P.H. van Tienderen</td>
</tr>
<tr>
<td>4:15</td>
<td>670</td>
<td>Experimental Analyses of Selection on Wing Size and Wing Loading in Pierid Butterflies</td>
<td>J. Kingsolver, R. Srygley</td>
</tr>
<tr>
<td>4:30</td>
<td>671</td>
<td>Effects of Stressful Larval Environment on Adult Phenotype in an Aposematic Ladybird Beetle</td>
<td>C.P. Grill, A.J. Moore</td>
</tr>
<tr>
<td>4:45</td>
<td>672</td>
<td>Geographic Variation and Phenotypic Plasticity in Shell Shape Within the Pulmonate Pond Snail Genus Physella: Implications for Classification of Extant and Fossil Mollusca</td>
<td>C.A. Burnside, R.F. McMahon</td>
</tr>
<tr>
<td>5:00</td>
<td>673</td>
<td>Factors of Safety in the Structure of Crab Claws: Variation Among Six Parasympatric Cancer Species of the Pacific Northwest</td>
<td>G.M. Taylor, A.R. Palmer, A. Barton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30-5:15</td>
<td></td>
<td>UMC 157</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>674</td>
<td>Local Clocks Between Snapping Shrimps in Different Ecological Environments</td>
<td>C.L. Morrison, L.G. Abele</td>
</tr>
</tbody>
</table>
Rate Heterogeneity in MtDNA 16S rRNA Genes in the Genus *Centropomus* and Evolutionary Divergence Between Its Transisthmian Species-Pairs
M.D. Tringali, T.M. Bert

Comparative Genomics of Extreme Microbes
R. Feldman, G. Olsen, E. Delong, C. Woese, R. Swanson

Isocitrate Dehydrogenase and Carboxylesterase: Two Extreme Cases of Gene Evolution
A. Nekrutenko, J.C. Patton, R.D. Bradley, R.J. Baker

Phylogenetic Analyses and Chromosomal Mapping of the CXC Chemokine Subfamily
W.S. Modi, A. Chidambaram, T.L. Chen, T. Yoshimura

The Importin Gene in Ciliates: New Perspectives on the Evolution of an Important Protein
L.A. Katz

Modular Evolution of Spider Silk Genes
C.Y. Hayashi

JILA Auditorium

Session 80 - Ecological Genetics
Chair: Michael Antolin

Small Scale Genetic Variation in Marine Mussels: Evidence for Selection?
D. Heath

Phylogeography of MtDNA Sequences in Barred Owls (Aves: Strigidae)
G.F. Barrowclough, J.G. Groth

Microsatellite and MtDNA Analyses of a Highly Polymorphic Cichlid Species, *Cichlasoma citrinellum*
K. Noack, A. Meyer

The Melding of Demographics and Genetics in the Townsend's Ground Squirrel
M.F. Antolin, B. Van Horne

Microstratigraphic Variation and Selection in Fossil Stickleback Fish
*D.M. Blow, *M.A. Bell*

Extinction, Persistence, and Evolutionary Change in Response to Environmental Stress in the Pitcher-Plant Mosquito, *Wyeomyia smithii*
P. Armbruster, A. Steiner, W.E. Bradshaw, C.M. Holzapfel

Balancing Selection at the Mpi Locus in *Semibalanus balanoides*
P. Schmidt, D. Rand

Old Main Chapel

Session 81 - Molecular Systematics
Chair: Roberta Mason-Gamer

Phylogenetics of Subtribe Orchidinae (Orchidoideae, Orchidaceae) Based on Nuclear ITS Sequences and Polyphyly of *Orchis* s.l.
A.M. Pridegton, R.M. Bateman, A.V. Cox, M.W. Chase
3:45 689 Chromosome and Genome Size Evolution in the Slipper Orchids (Cypripedioideae: Orchidaceae)
*A.V. Cox, G.J. Abdelnour, M.D. Bennett, I.J. Leitch

4:00 690 Phylogenetic Relationships Within Orchidaceae as Inferred From RbcL and MatK Sequence Data

4:15 691 Saprophytism in Orchidaceae: Origins and Character Evolution
*M. Molvray, P. Kores, K. Cameron, J. Freudenstein, M. Chase

4:30 692 A Revolutionary View of the Parasitic Scrophulariaceae/Orobanchaceae
*N.D. Young, K.E. Steiner, C.W. DePamphilis

4:45 693 Addition of Nuclear Starch-Synthase Gene Sequences to the Ongoing Phylogenetic Analysis of the Triticeae (Poaceae).
*R.J. Mason-Gamer, E.A. Kellogg

5:00 694 Neighboring Base Composition and Substitution Rate in Chloroplast Genes
*B.R. Morton

UMC Forum
3:30-5:15 Session 82 - Conservation Genetics
Chair: Suzanne Edmands

3:30 695 Implied Population Structure for the Bornean Orangutan
*C. Muir, A.T. Beckenbach

3:45 696 Genetic Mechanisms Underlying Outbreeding Effects in an Intertidal Copepod
*S. Edmands

4:00 697 MitDNA and Microsatellite Data Suggest a Recent Origin for Pacific Swordfish Populations out of the Atlantic
*C. Reeb, B. Block, L. Arcangeli

4:15 698 Genetic Monitoring in the Restoration of Endangered Chinook Salmon in the Snake River Basin
*P. Moran, D.A. Dightman, R.S. Waples, L.K. Park

4:30 699 Extinction through Hybridization: A Simulation Study
*D.E. Wolf, L.H. Rieseberg

4:45 700 Patterns Of Genetic Diversity in Rare and Widespread Plant Congeners: Do Rare Species Have Low Genetic Variability?
*M.A. Gitzendanner, P.S. Soltis

5:00 701 Analysis of Populations of an Endangered Clematis and an Endangered Seneio Using Molecular Marker and Sequence Data
*R. Bellsey, D. Mount
Session 83 - Plant/Animal Interactions

Chair: Duncan Mackay

3:30 702 Consequences to the Reproductive Fitness of Predatory Wasps from Consuming Chemically Defended Caterpillar Prey.
*L.S. Rayor

3:45 703 Phylogenetic Analysis of Host-Use Evolution in Agromyzidae (Diptera): Evidence from DNA Sequence Data
*S.J. Scheffer, B.M. Wiegmann

4:00 704 Evolution of Host Plant Use in Leaf Beetles (Phratora sp.)
*N. Rank, A. Koepf

4:15 705 Macroevolutionary Chemical Trends in Host Plant Use by Blepharida (Chrysomelidae) Beetles
*J.X. Becerra

4:30 706 Geographic Variation in Dispersal and Seed Characteristics of an Australian Euphorb
*D. Mackay, M. Whalen

4:45 707 Inter- and Intra-Seasonal Variation in Effective Pollinators of Swamp Milkweed (Asclepias incarnata)
*C.T. Ivey, R. Wyatt

5:00 708 The Costs and Benefits of Sequestering Plant Toxins in North American and Finnish Nymphalid Butterflies.
*M.D. Camara, N. Turner, M. Pigliucci

Session 84 - Evolution of Sex and Recombination

Chair: Rosie Redfield

3:30 709 Evolution of RecA Homologs in Deep-Branching Eukaryotes: Implications for the Origin of Meiosis
*J.M. Logsdon, Jr., W.F. Doolittle

3:45 710 The Hotspot Paradox and the Evolution of Meiotic Crossing Over
A. Boulton, R.S. Myers, *R.J. Redfield

4:00 711 Add Sex and Stir: On the Evolution of Recombination and Meiosis
*D. Gessler

4:15 712 Sequence Variation Within and Between the Neo-X and Neo-Y Chromosomes of Drosophila americana, Implications for Sex Chromosome Evolution
*B. McAllister

4:30 713 The Evolution of Sex Ratio Diversity in Neochlamisus Leaf Beetles
*D.J. Funk, L.H. Shapiro

4:45 714 Sequence and Karyotype Evolution of Obligately Parthenogenetic Aphids (Tribe Tramini)
*B. Normark

Ramaley C250

3:30-5:15

Session 84 - Evolution of Sex and Recombination

Chair: Rosie Redfield
5:00 715 Red Queen Coevolution: Differential Infection of Common Snail Clones in Natural and Experimental Populations
*M. Dybdahl, C. Lively

UMC East Ballroom
4:30-6:30 Poster Session 3

716 Logistic Regression for Statistical Analyses of Multivariate Selection
*F. Janzen, H. Siern

717 Regulation of Transposable DNA Elements in Heterochromatin: The P Element of Drosophila melanogaster
*B.S. Haller, R.C. Woodruff

718 Rapid Evolution and Genetic Instability Coupled Via Clustered Mutations
*H. Huai, R.C. Woodruff

719 Physiological Mechanisms of Evolved Urea Resistance in D. melanogaster
*V. Pierce, A. Gibbs

720 Evolution of Water Balance in the Genus Drosophila
*A. Gibbs, L. Matzkin

721 Experimental Evolution of an Essential Transgene: A Role for Single Mutations of Large Effect?
*W.D. Crill

722 A Quantitative Genetic Model for the Maintenance of Predator-Induced Polymorphism
*W. Hazel, R. Smock

724 Sudden Evolution in the Soapberry Bug: Distinguishing Selective Pathways
*S. Carroll, H. Dingle

725 Molecular Evidence for Sympatric Divergence in Madeiran Storm Petrels (Oceanodroma castro)
*V. Lodha

726 Suites of Life History Traits (Growth Trajectories, Maturation Patterns, Asymptotic Sizes) in Guppies from Different Predation Regimes
*F.H. Rodd, J.A. Stamps, D.N. Reznick

727 The Functional Matrix and Evolutionary Innovations in Bats
*R.A. Adams, S.C. Pedersen

728 Interpretation of Developmental Ossification Patterns in Teleost Fishes
*P. Mabec, C. Cubbage

729 Know Thy Self or Know Thy Kin: Crossfostering Reverses MHC Matting Preferences
D. Penn, *W. Potts

730 The Evolution of Sterile Spermatophores in the Hawaiian Cricket Laupala cerasina
*K.L. Shaw, A.H. Khine

59
Synodontis multipunctatus - The Cuckoo Catfish from Lake Tanganyika
*A. Cruz, S. Pawlowski, C. Wilks

Peripheral Speciation in Indo-West Pacific Sea-Urchins
*L.B. Geyer, S.R. Palumbi

Molecular Phylogeny and Historical Biogeography of the South American Genus Austrofundulus
*T. Hrbek, J.E. Thomerson, A. Larson

Gene Flow in the Killfish Fundulus heteroclitus
*K.A. Callicott, D.A. Powers

A Genomic Parasite (B Chromosome) and an Ectoparasite (Mite) Decrease Female Fertility in a Grasshopper
*J.P.M. Camacho, E. Muñoz, F. Perfectii

The KNOTTED Family of Angiosperm Homeodomain Proteins-Origin and Evolution
*G. Bharathan, B-J Janssen, E.A. Kellogg, N. Sinha

Reshaping the Zootype: Cnidarians and the Evolution of the Hox Clusters
*D. Martinez, D. Bridge, K. Kuhn, P. Cartwright

A Molecular Phylogeny of New-World Jays Based on Mitochondrial Control Region
*M.A. Saunders, S.V. Edwards

A Phylogeny for Isoptera
*S. Kambhampati

Evolution of HOM-C Complex in Arthropods
*A. Abzhanov, T.C. Kaufman, A. Popadic

Substitution Processes and the Molecular Clock
*S. Schrodi, J. Gillespie, R. Hudson

Variation at Homologous Microsatellite Loci in Three Poecilia (Poeciliidae) Species
*J.S. Taylor, F. Breden

Identification of Polymorphic Microsatellites in Baboons Using Human PCR Primers, and Construction of a Baboon Genetic Map
*P.A. Morin, C.M. Kammerer, J. Rogers

Impact of Insularization on Genetic Variation Among Deer Mice (Peromyscus maniculatus) Populations
*P-A Landry, F-J Lapointe

Local Coadaptation Between Lupines and Bradyrhizobia
*E.L. Simms, L. Gades, A. Pringle

Local Genetic Structure Of Sagittaria isoetiformis (Alismataceae) Along an Environmental Gradient
*A.L. Edwards, R.R. Sharitz

Patterns of Extra-Pair Paternity in Multiple Broods of the Tree Swallow
*T.M. Roeneem, R.J. Robertson, C. Crossman, P.T. Boag
749 Ecological Strategies of Invading Ants in Hawaii
 *K. Ingram

750 Genetic Structure Across a Univoltine and Bivoltine Gradient in the Mud-Daubing Wasp,
 *Trypoxylon politum
 *S.A. Chien, H.J. Brockmann

751 Microsatellite Genotypes in the Four-Toed Salamander (Caudata: Plethodontidae)
 *I. Knight, R.N. Harris

752 Effects of Geographic Isolation on Genetic Diversity in the Western Pond Turtle, *Clemmys marmorata*: A Study Based on Microsatellites
 *C.M. Ingram

753 Comparisons of Rough-Winged Swallow Populations Using Mitochondrial DNA Sequences
 *M.J. Babin

754 Mitochondrial DNA Diversity of the Modern, Cosmopolitan Peoples of Mexico
 *L. Green, J. Derr, A. Knight

755 Hollywood Medfly: Alien or Resident at P < 0.05?
 *G. Roderick, F. Villablanca, N. Davies, S. Palumbi

756 Population Structure of *Strongylocentrotus purpuratus*: Genetic Analysis of Recruits and Young of the Year
 *P.E. Moberg, R.S. Burton

757 Detecting Recent Immigration Using Multilocus Genotypes
 *J.L. Mountain, B. Rannala

758 Mutation Accumulation for Chemosensory Behavior in the Nematode, *Caenorhabditis elegans*
 J. Morpeth, *P.C. Phillips

759 Preponderance of Mildly Deleterious Mutations Affecting Male Fertility in Long-Term
 Mutation Accumulation Lines of *Drosophila melanogaster*
 *J.D. Fry, T.F.C. Mackay

760 Methods for Estimating Phenological Assortative Mating, with an Application
 to Australian *Ranunculus* Species
 *G.A. Fox, C.M. Pickering

761 Phylogenesis of Host Range in Heliothine Moths (Insecta: Lepidoptera: Noctuidae)
 S. Cho, *C. Mitter, J. Reiger

762 Phylogenetic Relationships Among Megapode Birds (Megapodiidae): Preliminary Results
 from Non-Coding Nuclear DNA Sequences
 *S.M. Birks, S.V. Edwards

763 Morphological Evolution and Biogeography in Pines Using Phylogenetic Evidence from ITS
 Sequences and Restriction-Site Variation
 *G. Mendez-Cardenas, A. Castañeda, S. Ortiz-Garcia, A. Liston, E. Alvarez-Buylla, D.
 Piñero

61
Phylogenetic Relationships of Eastern North American Phlox L. (Polemoniaceae) Based on Molecular Data: Evidence for Hybrid Speciation?
* C.J. Ferguson, R.K. Jansen

Microsatellite Variation Across Three Species of Non-Domestic Felids
* C. Driscoll, S. O'Brien

Molecular Systematics of the Myriapods
* J. Shultz, J. Reiger

Testing Hypotheses of the Evolution of the Genus Kikihia (New Zealand Cicadas)
* P. Arensburger, C. Simon, T. Buckley, G. Chambers

* S. Zaklan

Global Diversity of the Cool Desert Green Alga Bracteacoccus
* L.A. Lewis

Molecular and Fossil Evidence on an Early Divergence of Neotropical Pygmy Squirrels
* V.L. Roth, M.H. Kim, J.M. Mercer

Evolution in Tetraploid Plant Populations
R.D. Overath, *M.A. Asmussen

A Cladistic Biogeography of Gleditsia Based on NdhF and Rpl16 Chloroplast Gene Sequences
* A. Schnabel, J.F. Wendel

Ordinal Relationships and Character Evolution in Holothuroidea (Echinodermata)
* A.M. Kerr

The Association of Nest Material and Mandible Shape: A Morphometric Comparison
* N.M. Williams, K. Goodell

De Novo Evolution of Sense Organs Mediating a Postural Reflex in Flies
* C. Gilbert, R. Edgecomb

A Phylogenetic Analysis of Tent Caterpillar Social Evolution (Lasiocampidae: Melacosoma spp.)
* J.T. Costa

Initial Estimates of Inbreeding Depression in Rapid Cycling Brassica rapa
* P.V. Mandrekar, D.M. Waller

Geitonogamous Selfing Balancing the Effect of Herkogamy in Ipomoea purpurea
* S-M Chang

Association Between Floral Traits and Inbreeding Depression in Gilia achilleifolia (Polemoniaceae)
* N. Takebayashi
782 Natural Selection and Genetic Constraints on the Evolution of Tolerance to Herbivory in the Common Morning Glory, Ipomoea purpurea
*P. Tiffin

783 Sex Ratio Bias and Recombination in a Neo-Y Chromosome in the Housefly (Musca domestica)
*M.E. Clark, E.H. Bryant

784 Isolation and Initial Characterization of Clones from the W and Z Chromosomes in Birds
*N.W. Kahn, T.W. Quinn

785 Molecules, Morphology and Movement: Transcontinental Mitochondrial Analysis of Sage Grouse Includes a Morphologically and Behaviorally Unique Newly Described Species
*T.W. Quinn, C.E. Braun, J.R. Young, N.W. Kahn

786 Developmental Anomaly in Bristle Formation in Interspecific Hybrid of Drosophila
*T. Takano

Williams Village Darley Commons 103
5:30-6:30
ASN/SSB/SSE Coordinating Council Meeting

UMC Center Ballroom
6:00-7:45
Banquet

Macky Auditorium
8:00-9:00
SSB Presidential Address:
A frog he would a-wooing go
*Jay M. Savage

Wednesday, 18th June

CIRES Auditorium
8:30-10:00
Session 85 - Adaptation and Plasticity
Chair: Pamela Diggle

8:30 791 Competition, Photomorphogenesis and Fitness
*C. Weinig

8:45 792 Patterns of Danthonia spicata (Poaceae) Reproductive Allocation in Relation to Environmental Heterogeneity
*M. McCormick, K. Gross

9:00 793 Phenotypic Plasticity and Constraints of Inflorescence Architecture in Arabidopsis thaliana
*P. Diggle

9:15 794 The Labile Evolution of Epigyny in Lithophragma (Saxifragaceae)
*R.K. Kuzoff, L. Hufford, D.E. Soltis

9:30 795 Genotype-Environment Interaction and Natural Selection in Field Populations of Arabidopsis
*B. Stranger, T. Mitchell-Olds

9:45 796 Patterns of Phenotypic Plasticity in Clarkia (Onagraceae): Alloployploids and Their Diploid Relatives
*J.J. Butler, C.D. Schlichting
8:30-10:00 UMC 157
Session 86 - Life Histories and Development
Chair: Robert Krebs

8:30 797 Evolutionary Constraints on Thermotolerance Across the Life Cycle of *Drosophila melanogaster*
*R.A. Krebs

8:45 798 Evolution of the First Step in Development: Axis Specification in Nematode Embryos
*B. Goldstein

9:00 799 Heterochrony in the Evolution of Pigment Patterns in Fishes of the Genus *Danio* (Teleostei: Cyprinidae)?
*M. McClure

9:15 800 Genetic Variation of Senescence Reaction Norms Among Populations
*J.L. Dudycha

9:30 801 Limbs: An Embryonic Innovation in Direct-Developing Anurans
*T.F. Carl, J. Hanken

9:45 802 Molecular Phylogenetic Analysis of Life History Evolution in Asterinid Starfish
*M.W. Hart, M. Byrne, M.J. Smith

8:30-10:00 UMC 235
Session 87 - Hybridization and Sexual Isolation
Chair: Michael Wade

8:30 803 Hybrid Fitness in the Louisiana Irises: Evidence from Experimental Analyses
*J.M. Burke, S.E. Carney, M.L. Arnold

8:45 804 Are Hybridizing Acacias Adapted to Soil Type?
*A. Hempel, J.M. Burke, M.L. Arnold

9:00 805 A Putative Case of Very Rapid Hybrid Speciation in Sunflowers (*Helianthus*)
*S.E. Carney, L.H. Rieseberg

9:15 806 Pollen Swamping and Hybridization by an Introduced Plant (*Spartina alterniflora*) Threaten an Endemic Cordgrass (*Spartina foliosa*)
*C.K. Anttila, C.C. Daehler, N.E. Rank, D.R. Strong

9:30 807 Crop to Weed Gene Flow?
*N. Ellstrand

9:45 808 Gene Interactions and the Origin of Species
*M. Wade

8:30-10:00 Fine Arts N141
Session 88 - Molecular Evolution
Chair: Ronald Adkins

64
8:30 809 Molecular Evolutionary Biology of Pax Genes -- Implications for Eye Evolution
*H. Sun, A. Rodin, Y-H Zhou, D. Dickinson, W-H Li

8:45 810 Variation at the Human Melanocyte Stimulating Hormone Receptor Locus -- Possible Role
in Human Skin Pigmentation Variation
*B. Rana, D. Hewett-Emmett, W-H Li

9:00 811 Molecular Evolutionary Genetics of Primate Color Vision
*W-H Li, S-K Shyue, Y-H Zhou, S. Boissinot

9:15 812 Structural and Functional Coevolution of Human Growth Hormone and Its Receptor
*R.M. Adkins, W-H Li

9:30 813 The Evolution of Visual Pigment Genes in Butterflies (Lepidoptera)
*A. Briscoe

9:45 814 The Evolution of Codon Bias at the PsbA Locus of Flowering Plants
*B.R. Morton

UMC Forum
8:30-10:00 Session 89 - Population Genetics
Chair: Michael Nachman

8:30 815 Silencing of Duplicate-Gene Expression in a Highly Selfing Polyploid Freshwater Snail
*T. Staedler

8:45 816 Determinants of Microsatellite Evolution in Drosophila melanogaster
*M.D. Schug, C.F. Aquadro

9:00 817 Molecular Population Genetics of the Y Chromosome in Drosophila melanogaster and
D. simulans
*W. Eanes, M. Zurovcova

9:15 818 Polymorphism and Divergence at the Pgm Locus of Drosophila
*B.C. Verrelli, W.F. Eanes

9:30 819 Queen Relatedness in Fire Ants Estimated with Nuclear and Mitochondrial Markers
*M.A.D. Goodisman, K.G. Ross

9:45 820 DNA Variability, Selection, and Recombination at X-Linked Genes in House Mice and
Humans
*M.W. Nachman, V.L. Bauer, S.L. Crowell, C.F. Aquadro

Chemistry 140
8:30-10:00 Session 90 - Combined-Data Systematics
Chair: Sandra Baldauf

8:30 821 Consensus Phylogeny of Eukaryotes Based on Molecular Data
*S. Baldauf, W.F. Doolittle

8:45 822 Molecular Phylogenetics of Cancer Crabs: DNA, Morphology, and Fossils
*M. Harrison, B. Crespi
9:00 823 The Evolution of Bipedal Hopping in Kangaroos
*A. Burk, M. Springer, M. Westerman

9:15 824 Is Saturation of Substitutions Such a Big Problem?
*Z. Yang

9:30 825 Monophyly of the Ant Genus Messor
*M. Bennett

9:45 826

**

JILA Auditorium
8:30-10:00 Session 91 - Biogeography
Chair: Michael Charleston

8:30 827 Species Range Expansion and Drosophila-Parasitoid Interaction
H.R. Koepfer, *P.C. Chabora, A. Kermarrec

8:45 828 Jungles: A New Solution to the Host/Parasite Phylogeny Reconciliation Problem
*M.A. Charleston

9:00 829 Phylogeny and Biogeography of the North Temperate Disjunct Aralia sect. Aralia
(Araliaceae)
*J. Wen

9:15 830 Rarity and the Biogeography of the Large-Flowered Piptoloboid Clade of Astragalus L.
(Fabaceae).
*J.W. White

9:30 831 Genetic Structure of the Giant Tiger Prawn, Penaeus monodon, in Australia: MtDNA
Evidence of Founder Effect and Post-Glacial Population Spread
*J. Benzie, E. Ballment

9:45 832

10:00-10:30 Break

CIRES Auditorium
10:30-12:00 Session 92 - Experimental Evolution
Chair: Laura Landweber

10:30 833 Experimental Evolution of Temperature Sensitivity in Drosophila: Fitness Estimates on
Selected Lines
*G.W. Gilchrist, R.B. Huey

10:45 834 Expression of the 70-kD Heat Shock Protein in Drosophila Populations: Laboratory
Evolution at Different Temperatures
*B.R. Bettencourt, M.E. Feder, S. Cavicchi

11:00 835 In Vitro Evolution of a Small RNA Ligase Ribozyme from Random Sequences
*L. Landweber

11:15 836 An Experimental Test of Fisher's Geometric Model: Evolution by Small or Large Steps?
*C.L. Burch, L. Chao

66
11:30 837 The Consequence of Genetically Homogeneous and Heterogeneous Host Passages for Population Size, Virulence, and Infectivity of a Viral Pathogen
*G. Park, S.E. Kelley

11:45 838 Propagation of a Vertically Transmitted Virus in an Experimental Population Under Relaxed Selection
L.Y. Yampolsky, *C. Webb, A. Kondrashov, S. Shabalina

UMC 157

10:30-12:00 Session 93 - Sexual Selection
Chair: Joseph Travis

10:30 839 Polygynandry in Two Species of Male-Pregnant Pipefish (*Syngnathus floridae* and *S. typhle*): An Analysis Based on Microsatellite Data
*A.G. Jones, J.C. Avise

10:45 840 Evolutionary Reconstruction of Sexually Selected Characters in the Trinidad Guppy and Related Species
*F. Breden, M. Bertrand

11:00 841 Interspecific Female Choice Between High-Fin and Low-Fin Species of Mollies (*Poecilia latipinna*, *P. mexicana* and *P. orri*)
*M.B. Ptacek

11:15 842 The Evolution of Vertical Body Bars in Swordtail Fishes
*M.R. Morris

11:30 843 Secondary Sex Character Differentiation in Male Sailfin Mollies (*Poecilia latipinna*)
*J. Travis, M. Ptacek, N. Martin

11:45 844 Paternity Distributions in a Pelagically Spawning Fish - *Thalassoma bifasciatum*
*L. Wooninck

UMC 235

10:30-12:00 Session 94 - Speciation and Cladogenesis
Chair: Lisa Marie Meffert

10:30 846 Unstable Courtship Repertoire of Founder-Flush Populations of the Housefly
*L.M. Meffert

10:45 847 Change in Pigmentation Pattern As it Relates to Speciation in Caribbean *Drosophila*
*H. Hollocher, J. Hatcher

11:00 848 Individuals, Food Webs, and Speciation in a Simulated Ecosystem
*C.C. Maley

11:15 849 Systematics and Evolution of New Zealand Cicadas
*P. Arensburger, C. Simon, T. Buckley, G. Chambers

11:30 850 Sexual Selection, Courtship Signals and Species Diversity in Teleost Fishes: Has Sexual Dimorphism Promoted Diversification?
*S. Mesnick

67
11:45 851 Contrasting Diversification Patterns Between Sister Clades *L.igeria* and *Nassopsidia* (Gastropoda: Thiaridae) from Lake Tanganyika: Morphology and DNA Sequence Variation
 *E. Michel

--

Fine Arts N141

10:30-12:00 Session 95 - Geographic Variation and Hybrid Zones
Chair: Theresa Bert

10:30 853 Signs for the Hybrid Speciation on the *Fundulus heteroclitus* (Teleostei; Fundulidae) Subspecies Boundary
*N. Mugue, J. Wei

10:45 854 Social Incompatibility and Gene Flow Across a Behavioral Hybrid Zone
*S. Cahan

11:00 855 Mitochondrial DNA Variation in a Supposed Hybrid Zone Between "*Akodon* olivaceus" and "*Akodon* xanthorhinus" (Rodentia: Sigmodontinae)
*M.F. Smith

11:15 856 Geographic Differentiation in the Jumping Spider *Habronattus pugillis*: Evidence for Sexual Selection on a Gene Tree?
*S. Masta, W. Maddison

11:30 857 The Project from Hell: Spanish Sardines, Speciation or Ecophenotypic Variation?
*T. Bert, B. Chernoff

11:45 858 Sexual and Microgeographical Variation in Body Size and Trophic Morphology Among Island Populations of Water Snakes
*A. Queral-Regil

--

Chemistry 140

10:30-12:00 Session 96 - Population Ecology
Chair: Emily Lyons

10:30 859 Geographic Distribution of *S. latifolia* and *M. violaceum* in the Eastern U.S.
*E.J. Lyons, A.M. Jarosz

10:45 860 Consequences of Phenotypic Variation in the Pheromone System of a Bark Beetle
*A.M. Shumate

11:00 861 A Population-Regulatory Mechanism for Limiting the Spread of Cheating in a Mutualism
*D.W. Yu, N.E. Pierce

11:15 862 Detection and Quantification of Stone Crab Larvae (*Menippe* sp.) from Marine Plankton Samples Using Competitive PCR
*J.G. Makinster, D.L. Felder, J.E. Neigel

11:30 863 Host-Parasite Interactions in Populations of Monarch Butterflies (*Danaus plexippus*) and a Protozoan Parasite (*Ophryocystis elektroscirrh*): Disease Dynamics in Relation to Host Migratory Behavior
*S.M. Altizer

68
Spatial Dispersion and Sexual Selection in the Digger Wasp, *Microbembex*
T. Fratzei

UMC Forum
10:30-12:00 Session 97 - Population Genetics
Chair: Ellen Williamson

10:30 865 Developmental Rate, Polymorphism, and Natural Selection in *Fundulus heteroclitus*
E. Williamson, L. DiMichele

10:45 866 Microsatellite Analysis of Genetic Relatedness and Inbreeding in *Oncotrips*
T. Chapman, B. Crespi

11:00 867 Genetic Structuring in Populations of European Wild Rabbits (*Oryctolagus cuniculus*)
A.K. Surridge, D.J. Bell, G.M. Hewitt

11:15 868 Fig Wasps and the Effect of Population Size on Genetic Divergence
C. Machado

11:30 869 The Mediterranean-Atlantic Connection: MtDNA Variation Among Different Geographical Population of Several Species of Marine Teleosts (Sparidae, Perciformes)
L. Bargelloni, E. Penzo, L. Ostellari, T. Patarnello

11:45 870 Gone with the Wind Drift: Intraspecific MtDNA Variation for Two Circum-Antarctic Fish Species with Different Dispersal Ability
L. Bargelloni, E. Penzo, L. Ostellari, T. Patarnello

JILA Auditorium
10:30-12:00 Session 98 - Molecular Evolution
Chair: Niles Lehman

10:30 872 Continuous Evolution in Vitro of a Ligating Ribozyme
N. Lehman, M. Wright

10:45 873 An Ancient Retrovirus-Like Element, Mys 9, Is a Hot Spot for SINE Insertion
M.A. Cantrell, B.J. Filanoski, A.E. Ingerman, H.A. Wichman

11:00 874 Comparison of Orthologous Mys Retrotransposons in Two Species of *Peromyscus*
L. Scott, R. Sawby, C.J. Brown, H.A. Wichman

11:15 875 Competitive Dominance of Symbiotic Bacteria in a Luminous Bacterial-Squid Mutualism
M.K. Nishiguchi, E.G. Ruby, M.J. McFall-Ngai

11:30 876

11:45 877
<table>
<thead>
<tr>
<th>Author</th>
<th>Institution</th>
<th>Location</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbot, D. K., 578</td>
<td>University of Arizona</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Abdelnour, G.J., 689</td>
<td>Royal Botanic Gardens, Kew</td>
<td>U.K.</td>
<td></td>
</tr>
<tr>
<td>Abele, L.G., 643, 674</td>
<td>Florida State University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Abell, A.J., 589*</td>
<td>University of Houston</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Abouheif, E., 565, 660*</td>
<td>State University of New York, Stony Brook</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Abzhanov, A., 741*</td>
<td>Indiana University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Ackery, D., 659*</td>
<td>Stanford University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Adams, R.A., 727*</td>
<td>University of Wisconsin, Whitewater</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Adamson, M.L., 580</td>
<td>University of British Columbia, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adkins, R.M., 812*</td>
<td>University of Texas Health Science Center</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Agenbroad Berntson, E., 645*</td>
<td>Woods Hole Oceanographic Institution</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Agnew, K., 445*</td>
<td>University of Texas, Austin</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Agrawal, A.A., 85*</td>
<td>University of California, Davis</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Ahn, D.-G., 389</td>
<td>University of Michigan</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Atikin, S.N., 7*</td>
<td>University of British Columbia, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akashi, H., 271*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albert, J., 365*</td>
<td>Nippon Medical School, Japan</td>
<td></td>
<td>Japan</td>
</tr>
<tr>
<td>Albert, V., 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfaro, M.P., 176*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allard, M.W., 241*, 505</td>
<td>University of Chicago & The Field Museum</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Alfroy, J., 567*</td>
<td>Smithsonian Institution</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Altizer, S.M., 864*</td>
<td>University of Minnesota</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Alvarez-Buylla, E., 763</td>
<td>Universidad Nacional Autonoma de Mexico</td>
<td>Mexico</td>
<td></td>
</tr>
<tr>
<td>Amaral, W., 57</td>
<td>Harvard University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Andreedis, D.K., 630</td>
<td>University of Tennessee, Knoxville</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Antolin, M.F., 276, 684*</td>
<td>Colorado State University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Anttila, C.K., 806*</td>
<td>University of California, Davis Bodega Marine Lab & Sonoma State University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Apsit, V.J., 170*</td>
<td>University of Georgia</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Aquadro, C.F., 316, 628, 816, 820</td>
<td>Cornell University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Arcangeli, L., 697</td>
<td>Hopkins Marine Station, Stanford University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Ardlie, K.G., 490</td>
<td>Harvard University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Aremsburger, P., 504, 767*, 849*</td>
<td>University of Connecticut</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Armbruster, P.A., 541, 686*</td>
<td>University of Oregon</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Arnagrand, M., 291</td>
<td>University of New Hampshire</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Arnold, J., 230, 421</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arnold, M.L., 66, 803, 804</td>
<td>University of Georgia</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Arntzen, J.W., 22</td>
<td>University of Wales</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Ashley, M.V., 126, 601*</td>
<td>University of Illinois, Chicago</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Asmussen, M.A., 144*, 421, 772*</td>
<td>University of Georgia</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Avise, J.C., 175, 839</td>
<td>University of Georgia</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Ayala, F.J., 23</td>
<td>University of California, Irvine</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Babcock, C.S., 144</td>
<td>University of Arizona</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Babcock, S.K., 571</td>
<td>James Madison University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Babin, M.J., 753*</td>
<td>Louisiana State University Museum of Natural Science</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Badyaev, A., 549*</td>
<td>University of Montana, Missoula</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Baer, C., 461*</td>
<td>Florida State University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Bailey, R., 478</td>
<td>University of Leeds, U.K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baker, A.J., 293</td>
<td>Royal Ontario Museum, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baker, R.J., 553, 677</td>
<td>Texas Tech University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Bakkali, M., 209</td>
<td>Universidad de Granada, Spain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baldauf, S., 821*</td>
<td>Dalhousie University, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balkwill, K., 226</td>
<td>University of the Witwatersrand, South Africa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballent, E., 831</td>
<td>Australian Institute of Marine Science, Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barfield, M., 539</td>
<td>University of Kansas</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Bargelloni, L., 869*, 870*</td>
<td>Universita' di Padova, Italy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barker, B., 81*</td>
<td>University of Montana</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Barker, F.K., 612</td>
<td>The Field Museum</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Barracough, T.G., 332</td>
<td>Imperial College at Silwood Park, U.K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrett, S.C.H., 47, 135, 439</td>
<td>University of Toronto, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrier, M., 211*</td>
<td>North Carolina State University</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Barrowclough, G.F., 682*</td>
<td>American Museum of Natural History</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Barry, J.P., 222</td>
<td>Monterey Bay Aquarium Research Institute</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Barthlomaeus, E.L., 248*</td>
<td>University of Kansas</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Barton, A., 673</td>
<td>University of Alberta, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barton, N.H., 538</td>
<td>University of Edinburgh, U.K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basolo, A.L., 104*</td>
<td>University of Nebraska, Lincoln, U.S.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batalliou, T.M., 447</td>
<td>McGill University & INRA, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bateman, R.M., 688</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Royal Botanic Gardens, Kew, U.K.

Chen, T.L., 678
National Cancer Institute, Frederick, Maryland, U.S.A.

Chernoff, B., 256, 857, 569*
The Field Museum, U.S.A.

Chessar, R.K., 553
Savannah River Ecology Lab, U.S.A.

Chessar, R.T., 396*
American Museum of Natural History, U.S.A.

Cheverud, J.M., 388, 390
Washington University School of Medicine, U.S.A.

Chidambaram, A., 678
National Cancer Institute, Frederick, Maryland, U.S.A.

Chien, S.A., 750*
University of Florida, U.S.A.

Chippendale, A., 39*
University of California, Santa Cruz, U.S.A.

Chippendale, P.T., 177*, 237
University of Texas, Arlington, U.S.A.

Chinjarj, D., 278
University of Colorado, Boulder, U.S.A.

Chiu, C.-H., 483*, 499
Wayne State University School of Medicine, U.S.A.

Cho, S., 761*
University of Maryland, U.S.A.

Christiansen, F.B., 449
University of Aarhus, Denmark

Chu, J., 627
New Mexico State University, U.S.A.

Cipriano, F., 554*
Harvard University, U.S.A.

Cisper, G., 198*
University of Nebraska, Lincoln, U.S.A.

Clark, A.G., 119, 387*
Penn State University, U.S.A.

Clark, J., 319
University of Arizona, U.S.A.

Clark, M.E., 783*
University of Houston, U.S.A.

Clausen, M.J., 8
University of Arizona, U.S.A.

Clay, K., 97
Indiana University, U.S.A.

Clayton, D.H., 472*
University of Utah, U.S.A.

Clegg, M.T., 595, 596
University of California, Riverside, U.S.A.

Cross, G., 192
University of Otago, New Zealand

Coffey, K., 305
New Mexico State University, U.S.A.

Coiffioth, M.A., 646
State University of New York, Buffalo, U.S.A.

Cognato, A.L., 236*
University of California, Berkeley, U.S.A.

Cohan, F.M., 424, 625
Wesleyan University, U.S.A.

Cohen, C.S., 27*
University of New Hampshire, U.S.A.

Colburne, J., 443
University of Guelph, Canada

Cole, B.J., 576*, 588, 589
University of Houston, U.S.A.

Collazo, A., 358*

Congdon, B.C., 480*
Queen’s University, Canada

Cooke, J.A., 296

Cresser, B., 28, 822, 866
Simon Fraser University, Canada

Crill, W.D., 407*, 721*
University of Texas, Austin, U.S.A.

Cronin, R., 599*
Iowa State University, U.S.A.

Cromer, C., 748
Queen’s University, Canada

Crother, B., 129*
Southeastern Louisiana University, U.S.A.

Crowell, S.L., 820
University of Arizona, U.S.A.

Cruz, A., 732*
University of Colorado, Boulder, U.S.A.

Cubbage, C., 728
University of Pennsylvania, U.S.A.

Cullum, A.J., 633*
University of California, Irvine, U.S.A.

Cunningham, C., 122
Duke University, U.S.A.

Currie, J.P., 519*
Louisiana State University, U.S.A.

Curtsinger, J.W., 37
University of Minnesota, U.S.A.

da Silva, J., 310*
Lawrencean University, Canada

Daehler, C.C., 806
University of Hawaii, U.S.A.

Dandridge, K., 71
Purdue University, U.S.A.

Danley, P., 291
University of New Hampshire, U.S.A.

Danoff-Burg, J.A., 331*
American Museum of Natural History, U.S.A.

Davidowitz, G., 667*
University of Arizona, U.S.A.

Davies, N., 116*, 755
University of Hawaii, U.S.A.

Davis, S.K., 560
Texas A&M University, U.S.A.

Day, T., 522*
Queen’s University, Canada

de Jong, W., 123
University of Amsterdam

de Queiroz, A., 344*
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dickinson, D.</td>
<td>University of Texas Health Science Center</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>De Queiroz, K.</td>
<td>National Museum of Natural History</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>de Severyn, Y.G.</td>
<td>La Universidad del Zulia</td>
<td>Venezuela</td>
</tr>
<tr>
<td>de Visser, A.</td>
<td>Michigan State University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Dean, R.</td>
<td>USDA-ARS</td>
<td></td>
</tr>
<tr>
<td>DeAngelis, M.</td>
<td>University of Tennessee</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Defrery, R.W.</td>
<td>University of Cincinnati</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>DeFilippis, V.R.</td>
<td>University of California</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Delesalle, V.A.</td>
<td>Gettysburg College</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Delong, E.</td>
<td>University of California</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Delph, L.F.</td>
<td>Indiana University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Dembroski, J.R.</td>
<td>University of Alaska</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Deng, H.-W.</td>
<td>University of Texas</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>DePamphilis, C.W.</td>
<td>Vanderbilt University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Derr, J.</td>
<td>Texas A&M University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Desalle, R.</td>
<td>Yale University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Devlin, R.</td>
<td>Fisheries and Oceans</td>
<td>Canada</td>
</tr>
<tr>
<td>Dickie, S.</td>
<td>Iowa State University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Didier, F.</td>
<td>Universite Paul Sabatier</td>
<td>France</td>
</tr>
<tr>
<td>Diehl, W.J.</td>
<td>Mississippi State University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Diggle, P.</td>
<td>University of Colorado</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Dightman, D.A.</td>
<td>National Marine Fisheries Service</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Dillon, A.K.</td>
<td>Case Western Reserve University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>DiMichele, L.</td>
<td>Texas A&M University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Dingle, H.</td>
<td>University of California</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Diogo, A.</td>
<td>Natural History Museum</td>
<td>U.K.</td>
</tr>
<tr>
<td>Dirzo, R.</td>
<td>Universidad Nacional Autonomia de Mexico</td>
<td>Mexico</td>
</tr>
<tr>
<td>Doebley, J.F.</td>
<td>University of Minnesota</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Dohrmann, C.E.</td>
<td>Massachusetts General Hospital & Harvard Medical School</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Dominguez, C.A.</td>
<td>Universidad Nacional Autonomia de Mexico</td>
<td>Mexico</td>
</tr>
<tr>
<td>Donoghue, M.</td>
<td>Harvard University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Donohue, K.</td>
<td>Brown University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Doolittle, W.F.</td>
<td>Dalhousie University</td>
<td>Canada</td>
</tr>
<tr>
<td>Dorken, M.</td>
<td>Queen's University</td>
<td>Canada</td>
</tr>
<tr>
<td>Dom, L.</td>
<td>Brown University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>dos Santos, P.</td>
<td>Universidad de Sao Paulo</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dow, B.D.</td>
<td>University of Illinois</td>
<td>Chicago, U.S.A.</td>
</tr>
<tr>
<td>Dowling, T.E.</td>
<td>Arizona State University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Downhower, J.</td>
<td>Ohio State University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Downie, S.R.</td>
<td>University of Illinois</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Dries, L.</td>
<td>University of Texas</td>
<td>Austin, U.S.A.</td>
</tr>
<tr>
<td>Driscoll, C.,</td>
<td>National Cancer Institute</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Driskell, A.C.</td>
<td>University of Chicago & Field Museum of Natural History</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Driver, P.D.</td>
<td>University of Canberra</td>
<td>Australia</td>
</tr>
<tr>
<td>Dubb, L.</td>
<td>University of Washington</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Dubois, M.-P.</td>
<td>University of Montpellier</td>
<td>France</td>
</tr>
<tr>
<td>Dudash, M.R.</td>
<td>University of Maryland</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Duley, D.</td>
<td>Indiana University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Dudley, S.A.</td>
<td>McMaster University</td>
<td>Canada</td>
</tr>
<tr>
<td>Dudycha, J.L.</td>
<td>Kellogg Biological Station</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Duhachek, A.</td>
<td>University of Nebraska</td>
<td>Lincoln, U.S.A.</td>
</tr>
<tr>
<td>Duncan, G.A.</td>
<td>Nebraska Wesleyan University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Dunham, A.E.</td>
<td>University of Pennsylvania</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Durbin, M.L.</td>
<td>University of California</td>
<td>Riverside, U.S.A.</td>
</tr>
<tr>
<td>Dybdahl, M.F.</td>
<td>Indiana University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Eanes, W.</td>
<td>State University of New York</td>
<td>Stony Brook, U.S.A.</td>
</tr>
<tr>
<td>Ebert, D.</td>
<td>Basal University</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Edle, G.</td>
<td>University of Chicago</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Eckert, C.G.</td>
<td>Queen's University</td>
<td>Canada</td>
</tr>
<tr>
<td>Edgecomb, R.</td>
<td>AdvamEdge@lighlink.com</td>
<td></td>
</tr>
<tr>
<td>Edmonds, S.</td>
<td>University of Oregon</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Edwards, A.L.</td>
<td>University of Georgia & Savannah River Ecology Lab</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Edwards, S.V.</td>
<td>University of Washington</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Ermisene, D.J.</td>
<td>Califorina State University</td>
<td>Fullerton, U.S.A.</td>
</tr>
<tr>
<td>Egbert, S.L.</td>
<td>University of Kansas</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Eggiante, L.</td>
<td>Universidad Nacional Autonomia de Mexico</td>
<td>Mexico</td>
</tr>
<tr>
<td>Eisen, J.A.</td>
<td>Stanford University</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Elena, S.F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Affiliation</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Elle, E.</td>
<td>Rutgers University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Ellstrand, N.C.</td>
<td>University of California, Riverside, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Emerson, A.</td>
<td>University of California, Davis, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Emerson, B.C.</td>
<td>University of East Anglia, U.K.</td>
<td></td>
</tr>
<tr>
<td>Emerson, G.L.</td>
<td>George Washington University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Emlen, D.J.</td>
<td>University of Montana, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Emlen, J.M.</td>
<td>National Biological Service, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Eppley, S.</td>
<td>University of California, Davis, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Erdos, P.</td>
<td>Hungarian National Academy of Sciences</td>
<td></td>
</tr>
<tr>
<td>Eriksson, T.</td>
<td>Stockholm University</td>
<td></td>
</tr>
<tr>
<td>Espinosa, A.</td>
<td>American Museum of Natural History, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Eiges, W.J.</td>
<td>University of Arkansas, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Evans, A.L.</td>
<td>University of Western Louisian, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Evans, J.</td>
<td>University of Georgia, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Eyre-Walker, A.</td>
<td>University of Sussex, U.K.</td>
<td></td>
</tr>
<tr>
<td>Faghihi, J.</td>
<td>Purdue University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Fain, M.</td>
<td>Southern Illinois University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Fairbairn, D.</td>
<td>Purdue University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Concordia University, Canada</td>
<td>Ferris, V.R., 239* Purdue University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Georgia Southern University,</td>
<td>Fetscher, A.E., 401* University of California, San</td>
<td></td>
</tr>
<tr>
<td>U.S.A.</td>
<td>Diego, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>University of Pennsylvania,</td>
<td>Field, D., 557* University of California, San Diego,</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, U.S.A.</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>Filanowski, B.J., 873 University of Idaho, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Naturhistoriska Riksmeueet,</td>
<td>Fisher, K., 333*, 334*, 347 University of Notre Dame,</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>University, U.S.A.</td>
<td>Feder, J.L., 21, 333, 334*, 335, 547 University of</td>
<td></td>
</tr>
<tr>
<td>University of Notre Dame, U.S.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Chicago, U.S.A.</td>
<td>Felder, M.E., 95*, 834 University of Chicago, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>American Museum of Natural</td>
<td>Feinstein, J., 652 University of Washington, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>History, U.S.A.</td>
<td>University of Northwestern Louisiana, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>University of Washington, U.S.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Maryland, U.S.A.</td>
<td>Fehrenroth, C.B., 322, 323* University of Texas,</td>
<td></td>
</tr>
<tr>
<td>Austin, U.S.A.</td>
<td>Ferguson, C.J., 764* University of Texas, Austin, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Ferguson, N.J., 616*</td>
<td>University of California, Riverside, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Fordham University, U.S.A.</td>
<td>Fornoni, J.E., 90*, 193 Universidad Nacional</td>
<td></td>
</tr>
<tr>
<td>Grand Canyon University, U.S.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferris, J.M., 239</td>
<td>Universidad Autonoma de Mexico, Mexico</td>
<td></td>
</tr>
<tr>
<td>Purdue University, U.S.A.</td>
<td>Forschler, B.T., 32 University of Georgia, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Fox, J.A., 352</td>
<td>Frabotta, L., 510* California State University, Long</td>
<td></td>
</tr>
<tr>
<td>Indiana University, U.S.A.</td>
<td>Beach, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Fraizer, T., 864*</td>
<td>University of California, Davis, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Arizona, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Utah, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Wyoming, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Colorado, Boulder, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Colorado, Boulder, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of California, San Diego State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Utah, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Wyoming, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of California, San Diego State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Virginia, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Arizona, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of California, San Diego State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Virginia, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of California, San Diego State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Utah, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Harvard University, U.S.A.</td>
<td>University of Arizona, U.S.A.</td>
<td></td>
</tr>
</tbody>
</table>
Futuyma, D.J., 120
State University of New
York, Stony Brook, U.S.A.

Gadles, L., 746
University of Chicago,
U.S.A.

Galen, C., 452
University of Missouri,
U.S.A.

Galloway, L.F., 322*, 323
University of Virginia,
U.S.A.

Gartner, B.L., 7
Oregon State University,
U.S.A.

Gasper, J., 111
University of Washington,
U.S.A.

Gatesy, J., 124*
University of Arizona,
U.S.A.

Gaut, B.S., 429, 597*
Rutgers University, U.S.A.

Geisler, J., 289
American Museum of
Natural History &
Columbia University,
U.S.A.

Gemmill, A., 420*
University of Edinburgh,
U.K.

Gemmill, C.E.C., 238*,
453
Smithsonian Institution,
U.S.A.

Gerber, A.S., 558*
Arizona State University,
U.S.A.

Gergis, W.F., 278
Therion Corporation

Gessler, D., 711*
University of California,
Riverside, U.S.A.

Getty, T., 29*
Michigan State University,
U.S.A.

Geyer, L.B., 733*
Harvard University,
U.S.A.

Giannasi, N., 475*
University of Wales, U.K.

Gibbs, A., 719, 720*
University of California,
Irvine, U.S.A.

Gibson, G., 389*
University of Michigan,
U.S.A.

Gibson, P., 45*
Agnes Scott College,
U.S.A.

Gilbert, C., 777*
Cornell University, U.S.A.

Gilchrist, G.W., 833*
University of Washington,
U.S.A.

Gillespie, J., 268*, 742
University of California,
Davis, U.S.A.

Gillespie, R., 205*
University of Hawaii,
U.S.A.

Gilman, S.E., 222*
University of California,
Davis, U.S.A.

Giordano, R., 64*
University of Illinois,
U.S.A.

Gitzendanner, M.A., 700*
Washington State
University, U.S.A.

Goebel, A.M., 559*
University of Colorado,
Boulder, U.S.A.

Goldman, D., 690
University of Texas,
Austin, U.S.A.

Goldstein, B., 798*
University of California,
Berkeley, U.S.A.

Goldstein, P.Z., 328*
University of Connecticut,
U.S.A.

Golubov, J.*, 220
Universidad Nacional
Autonoma de Mexico,
Mexico

Gomulkwicz, R., 539*
Washington State
University, U.S.A.

Goodell, K., 776
State University of New
York, Stony Brook, U.S.A.

Goodisman, M.A.D., 819*
University of Georgia,
U.S.A.

Goodman, M., 483, 499
Wayne State University
School of Medicine, U.S.A.

Goodnight, C., 139*
University of Vermont,
U.S.A.

Goodnight, K.F., 382*
Rice University, U.S.A.

Goodwillie, C., 48*
University of Washington,
U.S.A.

Goulet, T.L., 646*
State University of New
York, Buffalo, U.S.A.

Gowaty, P., 306
University of Georgia,
U.S.A.

Graham, A.L., 466*
Cornell University, U.S.A.

Graham, J.H., 206*, 668*
Berry College, U.S.A.

Graham, S.W., 439*
University of Washington,
U.S.A.

Graf, R.A., 216
University of Idaho,
U.S.A.

Grant, M.C., 188*
University of Colorado,
Boulder, U.S.A.

Gravitz, L., 517
Barnard College

Gray, R.D., 297*
University of Auckland,
New Zealand

Graybeal, A., 130*
The Field Museum, U.S.A.

Green, L., 754*
Sal Ross State University,
U.S.A.

Greenfield, M., 149*, 201, 548
University of Kansas,
U.S.A.

Gregg, T., 190*
Miami University, U.S.A.

Gregory, P.G., 627
Mahidol University

Griffiths, C., 410*
American Museum of
Natural History, U.S.A.

Griffiths, R., 472
University of Glasgow,
U.K.

Grill, C.P., 671*
University of Kentucky,
U.S.A.

Grismer, E., 612
The Field Museum, U.S.A.

Grosberg, R.K., 67
University of California,
Davis, U.S.A.

Gross, K., 792
Michigan State University,
U.S.A.

Groth, J.G., 582
American Museum of
Natural History, U.S.A.

Guilati, A., 407
University of Texas,
Austin, U.S.A.

Guilbarg, U., 140
Swedish University of
Agriculture, Sweden

Guralnick, R.P., 15
University of California,
Berkeley, U.S.A.

Guthrie, E., 231*
Northern Arizona
University, U.S.A.

Guyenne, D., 591*
University of Toronto,
Canada

Hacker, S., 531*
Washington State
University, Vancouver,
U.S.A.

Hackett, S., 612*
The Field Museum, U.S.A.

Hailer, J., 397
The Field Museum, U.S.A.

Hakverdyan, M., 121
Armenian Academy of
Sciences

Halama, K.J., 366*
University of California,
Riverside, U.S.A.

Halanykh, K.M., 644*
Rutgers University, U.S.A.

Haller, B.S., 717*
Bowling Green State
University, U.S.A.
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamilton, M.</td>
<td>Smithsonian Institution, U.S.A.</td>
</tr>
<tr>
<td>Hamrick, J.L.</td>
<td>University of Georgia, U.S.A.</td>
</tr>
<tr>
<td>Hanawalt, P.C.</td>
<td>Stanford University, U.S.A.</td>
</tr>
<tr>
<td>Handford, P.</td>
<td>University Western Ontario, Canada</td>
</tr>
<tr>
<td>Hanken, J.</td>
<td>University of Colorado, Boulder, U.S.A.</td>
</tr>
<tr>
<td>Hans, C.J.</td>
<td>University of Arizona, U.S.A.</td>
</tr>
<tr>
<td>Harbach, R.</td>
<td>Natural History Museum, London, U.K.</td>
</tr>
<tr>
<td>Harder, J.</td>
<td>Ohio State University, U.S.A.</td>
</tr>
<tr>
<td>Harder, L.D.</td>
<td>University of Calgary, Canada</td>
</tr>
<tr>
<td>Harig, T.M.</td>
<td>Washington State University, U.S.A.</td>
</tr>
<tr>
<td>Hardwick, R.C.</td>
<td>University of Colorado, Denver, U.S.A.</td>
</tr>
<tr>
<td>Hare, M.</td>
<td>Harvard University, U.S.A.</td>
</tr>
<tr>
<td>Harris, J.</td>
<td>NSW Fisheries Research Institute, Australia</td>
</tr>
<tr>
<td>Harris, R.N.</td>
<td>James Madison University, U.S.A.</td>
</tr>
<tr>
<td>Harrison, D.A.</td>
<td>Queen's University, Canada</td>
</tr>
<tr>
<td>Harrison, M.</td>
<td>Simon Fraser University, Canada</td>
</tr>
<tr>
<td>Harrison, R.G.</td>
<td>Cornell University, U.S.A.</td>
</tr>
<tr>
<td>Hart, D.E.</td>
<td>Mississippi State University, U.S.A.</td>
</tr>
<tr>
<td>Hart, M.W.</td>
<td>University of California, Davis, U.S.A.</td>
</tr>
<tr>
<td>Hart, L.</td>
<td>University of Kentucky, U.S.A.</td>
</tr>
<tr>
<td>Haskell, D.</td>
<td>University of the South & Cornell University, U.S.A.</td>
</tr>
<tr>
<td>Hastings, P.</td>
<td>University of Arizona, U.S.A.</td>
</tr>
<tr>
<td>Hatcher, J.</td>
<td>Princeton University, U.S.A.</td>
</tr>
<tr>
<td>Hayashi, C.Y.</td>
<td>University of Wyoming, U.S.A.</td>
</tr>
<tr>
<td>Hayes, J.P.</td>
<td>University of Nevada, Reno, U.S.A.</td>
</tr>
<tr>
<td>Haynes, K.F.</td>
<td>University of Kentucky, U.S.A.</td>
</tr>
<tr>
<td>Hazel, W.</td>
<td>DePauw University, U.S.A.</td>
</tr>
<tr>
<td>Heath, D.D.</td>
<td>University of Northern British Columbia, Canada</td>
</tr>
<tr>
<td>Hebert, P.D.N.</td>
<td>University of Guelph, Canada</td>
</tr>
<tr>
<td>Hedlin, M.</td>
<td>University of Arizona, U.S.A.</td>
</tr>
<tr>
<td>Heed, W.B.</td>
<td>University of Arizona, U.S.A.</td>
</tr>
<tr>
<td>Hempel, A.</td>
<td>University of Georgia, U.S.A.</td>
</tr>
<tr>
<td>Hendy, M.</td>
<td>2</td>
</tr>
<tr>
<td>Henzie, C.</td>
<td>5</td>
</tr>
<tr>
<td>Herbers, J.M.</td>
<td>Colorado State University, U.S.A.</td>
</tr>
<tr>
<td>Herke, S.W.</td>
<td>Louisiana State University, U.S.A.</td>
</tr>
<tr>
<td>Herr, D.</td>
<td>University of North Carolina, Greensboro, U.S.A.</td>
</tr>
<tr>
<td>Herre, A.</td>
<td>Smithsonian Tropical Research Institute, Panama</td>
</tr>
<tr>
<td>Heschel, M.S.</td>
<td>Brown University, U.S.A.</td>
</tr>
<tr>
<td>Hewett-Emmett, D.</td>
<td>University of Texas Health Science Center, U.S.A.</td>
</tr>
<tr>
<td>Hewitt, O.M.</td>
<td>University of East Anglia, U.K.</td>
</tr>
<tr>
<td>Higdon, D.</td>
<td>Duke University, U.S.A.</td>
</tr>
<tr>
<td>Hill, G.</td>
<td>Auburn University, U.S.A.</td>
</tr>
<tr>
<td>Hillis, D.M.</td>
<td>University of Texas, Austin, U.S.A.</td>
</tr>
<tr>
<td>Hilton, H.</td>
<td>Rutgers University, U.S.A.</td>
</tr>
<tr>
<td>Hodges, W.</td>
<td>University of Texas, Austin, U.S.A.</td>
</tr>
<tr>
<td>Hodin, J.</td>
<td>University of Washington, U.S.A.</td>
</tr>
<tr>
<td>Hoekstra, H.E.</td>
<td>University of Washington, U.S.A.</td>
</tr>
<tr>
<td>Hoelzer, G.A.</td>
<td>University of California, Santa Cruz, U.S.A.</td>
</tr>
<tr>
<td>Holder, M.</td>
<td>University of Texas, Austin, U.S.A.</td>
</tr>
<tr>
<td>Holland, B.</td>
<td>University of California, Santa Cruz, U.S.A.</td>
</tr>
<tr>
<td>Hollocher, H.</td>
<td>Princeton University, U.S.A.</td>
</tr>
<tr>
<td>Holloway, A.K.</td>
<td>Colorado State University, U.S.A.</td>
</tr>
<tr>
<td>Holsinger, K.</td>
<td>University of Connecticut, U.S.A.</td>
</tr>
<tr>
<td>Holt, R.D.</td>
<td>University of Kansas, U.S.A.</td>
</tr>
<tr>
<td>Holzapfel, C.M.</td>
<td>University of Oregon, U.S.A.</td>
</tr>
<tr>
<td>Honeycutt, R.</td>
<td>Texas A&M University, U.S.A.</td>
</tr>
<tr>
<td>Houle, D.</td>
<td>University of Toronto, Canada</td>
</tr>
<tr>
<td>Howard, D.J.</td>
<td>New Mexico State University, U.S.A.</td>
</tr>
<tr>
<td>Howard, S.</td>
<td>Middle Tennessee State University, U.S.A.</td>
</tr>
<tr>
<td>Hrebek, T.</td>
<td>Washington University, U.S.A.</td>
</tr>
<tr>
<td>Hrincovich, A.W.</td>
<td>Louisiana State University, U.S.A.</td>
</tr>
<tr>
<td>Huai, H.</td>
<td>Bowling Green State University, U.S.A.</td>
</tr>
<tr>
<td>Huang, S.-W.</td>
<td>National Taiwan University, Taiwan</td>
</tr>
<tr>
<td>Huckins, G.</td>
<td>University of Arizona, U.S.A.</td>
</tr>
<tr>
<td>Hudson, R.</td>
<td>University of California, Irvine, U.S.A.</td>
</tr>
<tr>
<td>Hudspeith, D.S.S.</td>
<td>Northern Illinois University, U.S.A.</td>
</tr>
<tr>
<td>Huey, R.B.</td>
<td>University of Washington, U.S.A.</td>
</tr>
<tr>
<td>Huber, R.A.</td>
<td>Cornell University, U.S.A.</td>
</tr>
<tr>
<td>Hufford, L.</td>
<td>Washington State University, U.S.A.</td>
</tr>
<tr>
<td>Hunter, F.</td>
<td>Brock University</td>
</tr>
</tbody>
</table>
University of Arizona, U.S.A.
Kim, J., 215*, 279* Yale University, U.S.A.
Kim, M.H., 771 Duke University, U.S.A.
King, R.B., 233 Northern Illinois University, U.S.A.
Kingsolver, J., 670* University of Washington, U.S.A.
Kirchman, J.J., 640 Louisiana State University, U.S.A.
Kirkpatrick, M., 536 University of Texas at Austin, U.S.A.
Kishino, H., 298 University of Tokyo, Japan, U.S.A.
Klicka, J., 156* Bell Museum of Natural History, U.S.A.
Kliman, R.M., 315* Radford University, U.S.A.
Klingenberg, C.P., 14* Duke University, U.S.A.
Knight, A., 754 Sal Ross State University, U.S.A.
Knight, I., 751* James Madison University, U.S.A.
Kowalski, L.L., 120* State University of New York, Stony Brook, U.S.A.
Kocher, T., 291 University of New Hampshire, U.S.A.
Koopf, A., 704 Swiss Federal Institute of Technology-Zurich, Switzerland
Koepfer, H.R., 827 Queens College, U.S.A.
Kondrashov, A.S., 270*, 838 Cornell University, U.S.A.
Korall, P., 493* Stockholm University, Sweden
Kores, P., 690*, 691 Royal Botanic Gardens, Kew, U.K.
Kover, P.X., 97* Indiana University, U.S.A.
Krajewski, C., 607, 609* Southern Illinois University, U.S.A.
Kranz, B., 28* Flinders University of South Australia
Krebs, R.A., 797* University of Chicago, U.S.A.
Kreiser, B.R., 33* University of Colorado, Boulder, U.S.A.
Krieger, M.J., 308 University of Lausanne, Switzerland
Krist, A., 17* Indiana University, U.S.A.
Krukowis, G.P., 424* Wesleyan University, U.S.A.
Krupnick, G.A., 251* Penn State University, U.S.A.
Kruuk, L., 221 University of Edinburgh, U.K.
Kuhn, K., 738 Goethe-Universität
Kumar, S., 109 Penn State University, U.S.A.
Kurdziel, J.P., 551* State University of New York, Stony Brook, U.S.A.
Kuzoff, R.K., 794* Washington State University, U.S.A.
Labate, J.A., 426* USDA/ARS, Iowa State University, U.S.A.
Lacey, E.P., 11* University of North Carolina, Greensboro, U.S.A.
Lachmann, M., 574 Stanford University, U.S.A.
LaHood, E., 663 National Marine Fisheries Service, U.S.A.
Lamkey, K.R., 426 USDA/ARS, Iowa State University, U.S.A.
Landau, K., 51 University of Southwestern Louisiana, U.S.A.
Landry, P.-A., 745* Université de Montréal, Canada
Landweber, L.F., 214, 835* Princeton University, U.S.A.
Lanyon, S.M., 395 Bell Museum, University of Minnesota, U.S.A.
Lapointe, F.-J., 511*, 745 Université de Montréal, Canada
Larson, A., 174, 178, 561, 734 Washington University, U.S.A.
Latta, R., 346* University of Colorado, Boulder, U.S.A.
Lattke, J., 240* University of California, Davis, U.S.A.
Lay, K.K., 75 Stryker Medical Corporation, Kalamazoo, Michigan, U.S.A.
Leon, L.J., 388* University of North Carolina, Charlotte, U.S.A.
Learn, G., 370, 371* University of Washington, U.S.A.
Lee, Carol Eunmi, 442* University of Washington, U.S.A.
Lee, M., 426 Iowa State University, U.S.A.
Lee, P.L.M., 472 Oxford University, U.K.
Leebens-Mack, J., 336* Vanderbilt University, U.S.A.
Leeper, D., 613* University of Montana & Montana Department of Natural Resources and Conservation, U.S.A.
Lehnman, N., 204, 495, 872* California State University, Long Beach, U.S.A.
Leips, J., 546* Florida State University, U.S.A.
Leitch, I.J., 689 Royal Botanic Gardens, Kew, U.K.
Lenes, J.M., 75 University of South Florida, U.S.A.
Lenski, R., 141, 172, 309 Michigan State University, U.S.A.
Lessios, H.A., 441* Smithsonian Tropical Research Institute, Panama
Leverich, J., 463* Saint Louis University, U.S.A.
Levitt, J., 551, 566* State University of New York, Stony Brook, U.S.A.
Levitan, D.R., 202, 585* Florida State University, U.S.A.
Lewis, L.A., 770* University of New Mexico, U.S.A.
Lewis, P., 362* University of New Mexico, U.S.A.
Li, W.-H., 809, 810, 811*, 812 University of Texas Health Science Center, U.S.A.
Lin, J.-Z., 430* University of Montana, U.S.A.
Lindberg, D.R., 15* University of California, Berkeley, U.S.A.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linhart, Y.B.</td>
<td>University of Colorado, Boulder, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Lipow, S.</td>
<td>University of Georgia, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Liston, A.</td>
<td>Oregon State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Liu, F.</td>
<td>University of Chicago, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Liu, H.-P.</td>
<td>Savannah River Ecology Laboratory, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Liu, X.</td>
<td>Massachusetts General Hospital & Harvard Medical School, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Lively, C.M.</td>
<td>Indiana University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Lodge, D.M.</td>
<td>University of Notre Dame, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Lodisa, V.</td>
<td>Queen's University, Canada</td>
<td></td>
</tr>
<tr>
<td>Logsdon, J.M. Jr.</td>
<td>Dalhousie University, Canada</td>
<td></td>
</tr>
<tr>
<td>López-León, M.D.</td>
<td>Universidad de Granada, Spain</td>
<td></td>
</tr>
<tr>
<td>López-Portillo, J.</td>
<td>Instituto de Ecología, A.C., Mexico</td>
<td></td>
</tr>
<tr>
<td>Lorch, P.D.</td>
<td>University of Toronto, Canada</td>
<td></td>
</tr>
<tr>
<td>Losos, J.</td>
<td>Washington University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Loughheed, S.C.</td>
<td>Queen's University, Canada</td>
<td></td>
</tr>
<tr>
<td>Lovejoy, N.R.</td>
<td>Cornell University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Lowe, C.</td>
<td>State University of New York, Stony Brook, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Lu, Y.</td>
<td>Duke University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Lunt, D.H.</td>
<td>University of California, Riverside, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Lyapunova, E.</td>
<td>Russian Academy of Sciences</td>
<td></td>
</tr>
<tr>
<td>Lynch, M.</td>
<td>University of Oregon, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Lyons, E.J.</td>
<td>Indiana University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Lyons-Weiler, J.</td>
<td>University of Nevada, Reno, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Maboe, P.</td>
<td>San Diego State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Machado, C.</td>
<td>University of California, Irvine, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Machado-Allison, A.</td>
<td>Universidad Central de Venezuela, Venezuela</td>
<td></td>
</tr>
<tr>
<td>Mack, P.</td>
<td>University of Georgia, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Mackay, D.</td>
<td>Flinders University, Australia</td>
<td></td>
</tr>
<tr>
<td>Mackay, T.F.C.</td>
<td>North Carolina State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Maddison, W.</td>
<td>University of Arizona, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Mahoney, M.J.</td>
<td>University of California, Berkeley, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Majewski, J.</td>
<td>Wesleyan University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Makinson, J.G.</td>
<td>University of Southernst Louisiana, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Makova, K.D.</td>
<td>Texas Tech University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Maley, C.C.</td>
<td>Massachusetts Institute of Technology, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Malhotra, A.</td>
<td>University of Wales, U.K.</td>
<td></td>
</tr>
<tr>
<td>Malinos, K.</td>
<td>Arizona State University - West, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Malone, C.L.</td>
<td>Texas A&M University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Mandrekar, P.V.</td>
<td>University of Wisconsin, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Mandujano, M.</td>
<td>Universidad Nacional Autónoma de Mexico, Mexico</td>
<td></td>
</tr>
<tr>
<td>Maple, M.</td>
<td>University of Kentucky, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Marcato, S.</td>
<td>Università di Padova, Italy</td>
<td></td>
</tr>
<tr>
<td>Marcus, J.M.</td>
<td>Duke University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Marden, J.H.</td>
<td>Penn State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Mardulyn, P.</td>
<td>University of Arkansas, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Markert, J.</td>
<td>University of New Hampshire, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Marko, P.</td>
<td>University of California, Davis, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Maron, J.L.</td>
<td>University of California, Davis, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Marra, R.E.</td>
<td>Cornell University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Marshall, H.D.</td>
<td>Royal Ontario Museum, Canada</td>
<td></td>
</tr>
<tr>
<td>Marshall, T.</td>
<td>University of Edinburgh, U.K.</td>
<td></td>
</tr>
<tr>
<td>Martin, A.</td>
<td>University of Nevada, Las Vegas, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Martin, N.</td>
<td>Florida State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Martinez, J.</td>
<td>St. Lawrence University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Martinez, E.P.</td>
<td>University of Oregon, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Mason-Gamer, R.J.</td>
<td>Harvard University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Masta, S.</td>
<td>University of Arizona, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Matioli, S.R.</td>
<td>Universidade de São Paulo, Brazil</td>
<td></td>
</tr>
<tr>
<td>Matolesi, L.O.</td>
<td>University of Witwatersrand, South Africa</td>
<td></td>
</tr>
<tr>
<td>Matzkin, L.</td>
<td>State University of New York, Stony Brook, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>May, G.</td>
<td>University of Minnesota, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Mazer, S.J.</td>
<td>University of California, Santa Barbara, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>McAllister, B.</td>
<td>University of Chicago, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>McArthur, E.D.</td>
<td>USDA Forest Service</td>
<td></td>
</tr>
<tr>
<td>McCaig, B.C.</td>
<td>University of California, Riverside, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>McCartney, M.</td>
<td>Smithsonian Tropical Research Institute, Panama</td>
<td></td>
</tr>
<tr>
<td>McClure, M.</td>
<td>Cornell University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>McCommas, S.A.</td>
<td>Southern Illinois University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>McCormick, M.</td>
<td>Michigan State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>McCracken, K.G.</td>
<td>Louisiana State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>McCure, A.</td>
<td>Cornell University, U.S.A.</td>
<td></td>
</tr>
</tbody>
</table>
University of Utah, U.S.A.
Penny, D., 21*

Penzo, E., 870
Università di Padova, Italy

Perfectti, F., 736
Universidad de Granada, Spain

Perlman, S., 422*
University of Rochester, U.S.A.
Perry, W.L., 21*
University of Notre Dame, U.S.A.
Perryman, P., 177
University of Texas, Arlington, U.S.A.
Peters, A.D., 189*
Indiana University, U.S.A.

Peterson, A.T., 444*
University of Kansas, U.S.A.

Peterson, S.M., 494*
University of Arizona, U.S.A.

Pfenning, D., 572*
University of North Carolina, Chapel Hill, U.S.A.

Pfenning, K., 150*
University of North Carolina, Chapel Hill, U.S.A.

Pfrender, M., 392*
University of Oregon, U.S.A.

Phelps, S.M., 151*
University of Texas, Austin, U.S.A.

Phillips, J.B., 304
Indiana University, U.S.A.

Phillips, P.C., 354, 498*, 758*
University of Texas, Arlington, U.S.A.

Pickering, C.M., 760
Gold Coast Campus Griffith University, Australia

Pierce, N.E., 861
Harvard University, U.S.A.

Pierce, V., 719*
University of California, Irvine, U.S.A.

Pigliucci, M., 58, 604, 708
University of Tennessee, Knoxville, U.S.A.

Pinero, D., 763
Universidad Nacional Autónoma de México, Mexico

Platenkamp, G.A.J., 325
Jones & Stokes Associates, Inc.

Pletcher, S.D., 37*
University of Minnesota, U.S.A.

Plunkett, G.M., 437*
University of Illinois, U.S.A.

Poe, S., 127*
University of Texas, Austin & Texas Memorial Museum, U.S.A.

Pogson, G., 243
University of California, Santa Cruz, U.S.A.

Polak, M., 377*
Syracuse University, U.S.A.

Pollak, E., 426*
Iowa State University, U.S.A.

Pollard, J., 71*
Furman University, U.S.A.

Pollock, D., 409*
National Institute for Medical Research, U.K.

Popadic, A., 741
Indiana University, U.S.A.

Popodi, E., 515
Indiana University, U.S.A.

Porter, A., 350*
Bowling Green State University, U.S.A.

Porter, J.M., 598
Rancho Santa Ana Botanic Garden, U.S.A.

Posner, D.S., 587*
University of California, Davis, U.S.A.

Potts, W., 355, 729*
University of Utah, U.S.A.

Power, A.G., 379
Cornell University, U.S.A.

Powell, D.A., 405*, 735
Hopkins Marine Station, Stanford University, U.S.A.

Prather, W.C., 202*
Florida State University, U.S.A.

Pray, L., 533*
University of Vermont, U.S.A.

Preziosi, R., 537
University of Kentucky, U.S.A.

Price, D., 200*
University of Hawaii, U.S.A.

Pridgeon, A.M., 688*
Royal Botanic Gardens, Kew, U.K.

Pringle, A., 746
Duke University, U.S.A.

Pritchard, J., 555*
Stanford University, U.S.A.

Promislow, D., 199, 592*
University of Georgia, U.S.A.

Provell, D.P., 76, 203*
Louisiana State University, U.S.A.

Prum, R.O., 307*, 552
University of Kansas, U.S.A.

Pryer, K., 59*
The Field Museum, U.S.A.

Ptacek, M.B., 841*, 843
Idaho State University, U.S.A.

Parrington, C., 96
Washington University, U.S.A.

Parugganan, M., 211, 427*
North Carolina State University, U.S.A.

Queralt-Regil, A., 233*, 858*
Northern Illinois University, U.S.A.

Quinn, T.W., 784, 785*
University of Denver, U.S.A.

Quinones, A., 491*
Florida International University, U.S.A.

Raff, R., 515
Indiana University, U.S.A.

Raferty, L.A., 482
Massachusetts General Hospital & Harvard Medical School, U.S.A.

Ramey, R.R., II, 125*
University of Colorado, Boulder, U.S.A.

Ramirez, M.G., 73, 75*
Denison University, U.S.A.

Rana, B., 810*
University of Texas Health Science Center, U.S.A.

Rand, A.S., 148, 303
Smithsonian Tropical Research Institute, Panama

Rand, D.M., 317, 383*, 687
Brown University, U.S.A.

Rank, N.E., 704*, 806
Sonoma State University, U.S.A.

Ranker, T.A., 453*, 615
University of Colorado, Boulder, U.S.A.

Rankin, L., 34*
University of Northern British Columbia, Canada

Rannala, B., 181*, 757
University of California, Berkeley, U.S.A.

Rausher, M., 602
Duke University, U.S.A.

Rauter, C., 631*
University of Kentucky, U.S.A.

Rawson, P.D., 487*
Scripps Institution of Oceanography, University of California, San Diego, U.S.A.

Rayor, L.S., 702*
Cornell University, U.S.A.

Redfield, R.J., 710*
University of British Columbia, Canada

Ree, R., 128*, 341
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reeh, C.</td>
<td>697*</td>
<td>Harvard University, U.S.A.</td>
</tr>
<tr>
<td>Hopkins Marine Station, Stanford University, U.S.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reed, R.D.</td>
<td>234*</td>
<td>University of California, Berkeley, U.S.A.</td>
</tr>
<tr>
<td>Rees, D.J.</td>
<td>509*</td>
<td>University of East Anglia, U.K.</td>
</tr>
<tr>
<td>Reeve, J.</td>
<td>391*</td>
<td>Concordia University, Canada</td>
</tr>
<tr>
<td>Reeves, P.</td>
<td>436</td>
<td>University of Washington, U.S.A.</td>
</tr>
<tr>
<td>Regier, J.C.</td>
<td>284*, 761, 766</td>
<td>University of Maryland, U.S.A.</td>
</tr>
<tr>
<td>Reinhold, K.</td>
<td>384*</td>
<td>University of Kansas, U.S.A.</td>
</tr>
<tr>
<td>Reis, R.</td>
<td>107</td>
<td>Pontificia Universidade Catolica Rio Grande do Sul</td>
</tr>
<tr>
<td>Reiss, R.A.</td>
<td>244*</td>
<td>New Mexico Tech, U.S.A.</td>
</tr>
<tr>
<td>Remold, S.K.</td>
<td>370*</td>
<td>Cornell University, U.S.A.</td>
</tr>
<tr>
<td>Reynolds, P.</td>
<td>508*</td>
<td>Hamilton College, U.S.A.</td>
</tr>
<tr>
<td>Reznick, D.N.</td>
<td>543*, 726</td>
<td>University of California, Riverside, U.S.A.</td>
</tr>
<tr>
<td>Rice, K.</td>
<td>245, 246*, 260</td>
<td>University of Pennsylvania, U.S.A.</td>
</tr>
<tr>
<td>Rice, W.R.</td>
<td>39, 99*</td>
<td>University of California, Santa Cruz, U.S.A.</td>
</tr>
<tr>
<td>Richards, J.</td>
<td>9</td>
<td>University of California, Davis, U.S.A.</td>
</tr>
<tr>
<td>Richman, A.</td>
<td>624*</td>
<td>University of California, Davis, U.S.A.</td>
</tr>
<tr>
<td>Riddiford, L.</td>
<td>277</td>
<td>University of Washington, U.S.A.</td>
</tr>
<tr>
<td>Ridgeway, S.H.</td>
<td>258</td>
<td>Texas A&M University, U.S.A.</td>
</tr>
<tr>
<td>Rieber, L.H.</td>
<td>805, 699</td>
<td>Indiana University, U.S.A.</td>
</tr>
<tr>
<td>Riley, M.A.</td>
<td>369, 462</td>
<td>Yale University, U.S.A.</td>
</tr>
<tr>
<td>Robeck, H.</td>
<td>340*</td>
<td>Harvard University, U.S.A.</td>
</tr>
<tr>
<td>Roberts, L.D.</td>
<td>237*</td>
<td>University of Texas, Arlington, U.S.A.</td>
</tr>
<tr>
<td>Robertson, D.</td>
<td>188</td>
<td>University of Colorado, Boulder, U.S.A.</td>
</tr>
<tr>
<td>Robertson, H.M.</td>
<td>64</td>
<td>University of Illinois, U.S.A.</td>
</tr>
<tr>
<td>Robertson, R.J.</td>
<td>748</td>
<td>Queen's University, Canada</td>
</tr>
<tr>
<td>Robichaux, R.H.</td>
<td>211</td>
<td>University of Arizona, U.S.A.</td>
</tr>
<tr>
<td>Rodd, F.H.</td>
<td>726*</td>
<td>University of California, Davis, U.S.A.</td>
</tr>
<tr>
<td>Roderick, O.K.</td>
<td>116, 205, 755*</td>
<td>University of Hawaii, U.S.A.</td>
</tr>
<tr>
<td>Rodin, A.</td>
<td>301*, 809</td>
<td>University of Texas Health Science Center, U.S.A.</td>
</tr>
<tr>
<td>Rodrigo, A.</td>
<td>370*</td>
<td>University of Washington, U.S.A.</td>
</tr>
<tr>
<td>Roetherle, J.B.</td>
<td>333, 334, 335*</td>
<td>University of Notre Dame, U.S.A.</td>
</tr>
<tr>
<td>Roff, D.</td>
<td>40*, 41</td>
<td>McGill University, Canada</td>
</tr>
<tr>
<td>Rogers, J.</td>
<td>744</td>
<td>Southwest Foundation for Biomedical Research, U.S.A.</td>
</tr>
<tr>
<td>Rogers, J.S.</td>
<td>299*</td>
<td>University of New Orleans, U.S.A.</td>
</tr>
<tr>
<td>Rogers, L.</td>
<td>274*</td>
<td>University of Kentucky, U.S.A.</td>
</tr>
<tr>
<td>Rogers, L.</td>
<td>274*</td>
<td>University of Kentucky, U.S.A.</td>
</tr>
<tr>
<td>Rohlff, F.J.</td>
<td>412*</td>
<td>State University of New York, Stony Brook, U.S.A.</td>
</tr>
<tr>
<td>Romano, S.L.</td>
<td>647*</td>
<td>University of Guam, U.S.A.</td>
</tr>
<tr>
<td>Rounthaugen, M.</td>
<td>408*</td>
<td>University of Nevada, Las Vegas, U.S.A.</td>
</tr>
<tr>
<td>Rooneem, T.M.</td>
<td>748*</td>
<td>Queen's University, Canada</td>
</tr>
<tr>
<td>Rooney, A.P.</td>
<td>258*</td>
<td>Texas A&M University, U.S.A.</td>
</tr>
<tr>
<td>Ross, C.</td>
<td>63*</td>
<td>Cornell University, U.S.A.</td>
</tr>
<tr>
<td>Ross, K.G.</td>
<td>819</td>
<td>University of Georgia, U.S.A.</td>
</tr>
<tr>
<td>Ross, T.</td>
<td>31*</td>
<td>Iowa State University, U.S.A.</td>
</tr>
<tr>
<td>Roth, V.L.</td>
<td>771*</td>
<td>Duke University, U.S.A.</td>
</tr>
<tr>
<td>Routman, E.J.</td>
<td>388</td>
<td>San Francisco State University, U.S.A.</td>
</tr>
<tr>
<td>Ruby, E.G.</td>
<td>875</td>
<td>University of Hawaii, U.S.A.</td>
</tr>
<tr>
<td>Rundle, H.D.</td>
<td>470*</td>
<td>University of British Columbia, Canada</td>
</tr>
<tr>
<td>Russell, A.L.</td>
<td>228*</td>
<td>Bowling Green State University, U.S.A.</td>
</tr>
<tr>
<td>Ruvolo, M.</td>
<td>163</td>
<td>Harvard University, U.S.A.</td>
</tr>
<tr>
<td>Ryan, M.J.</td>
<td>151, 303</td>
<td>University of Texas, Austin, U.S.A.</td>
</tr>
<tr>
<td>Sadowski, J.A.</td>
<td>108*</td>
<td>University of Kentucky, U.S.A.</td>
</tr>
<tr>
<td>Sagarin, R.D.</td>
<td>222</td>
<td>University of California, Santa Barbara, U.S.A.</td>
</tr>
<tr>
<td>Sagarzazu, L.</td>
<td>489</td>
<td>Universidad Catistica Andrés Bello, Venezuela</td>
</tr>
<tr>
<td>Sala, A.</td>
<td>9</td>
<td>University of Montana, U.S.A.</td>
</tr>
<tr>
<td>Sanchez, M.S.</td>
<td>421*</td>
<td>University of Georgia, U.S.A.</td>
</tr>
<tr>
<td>Sanderson, M.J.</td>
<td>5*</td>
<td>University of Washington, U.S.A.</td>
</tr>
<tr>
<td>Santiago-Valentin, F., 185* University of Washington, U.S.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saunders, M.A.</td>
<td>739*</td>
<td>University of Washington, U.S.A.</td>
</tr>
<tr>
<td>Savalli, U.M.</td>
<td>367, 590*</td>
<td>Fordham University, U.S.A.</td>
</tr>
<tr>
<td>Sawby, R.</td>
<td>874</td>
<td>University of Idaho, U.S.A.</td>
</tr>
<tr>
<td>Scheffer, S.J.</td>
<td>703*</td>
<td>North Carolina State University, U.S.A.</td>
</tr>
<tr>
<td>Schierenbeck, K.A.</td>
<td>345*</td>
<td>California State University, Fresno, U.S.A.</td>
</tr>
<tr>
<td>Schierup, M.H.</td>
<td>449*</td>
<td>University of Aarhus, Denmark</td>
</tr>
<tr>
<td>Schlichting, C.D.</td>
<td>796*</td>
<td>University of Connecticut, U.S.A.</td>
</tr>
<tr>
<td>Schluter, D.</td>
<td>19, 470</td>
<td>University of British Columbia, Canada</td>
</tr>
<tr>
<td>Schnitzel, J.</td>
<td>10, 91*, 194, 458, 495</td>
<td>Brown University, U.S.A.</td>
</tr>
<tr>
<td>Schmeltzer, E.</td>
<td>687*</td>
<td>Brown University, U.S.A.</td>
</tr>
<tr>
<td>Schneider, C.</td>
<td>157*</td>
<td>Indiana University, U.S.A.</td>
</tr>
<tr>
<td>Schoen, D.J.</td>
<td>447</td>
<td>McGill University, Canada</td>
</tr>
<tr>
<td>Schoen, D.J.</td>
<td>447</td>
<td>McGill University, Canada</td>
</tr>
<tr>
<td>Schröder, S.</td>
<td>742*</td>
<td>University of Queensland, Australia</td>
</tr>
</tbody>
</table>
University of California, Irvine, U.S.A.

Schueler, G.W., 278*
Arizona State University - West, U.S.A.

Scheg, M.D., 816*
Cornell University, U.S.A.

Schulte, P., 405
Hopkins Marine Station, Stanford University, U.S.A.

Schultz, E., 543
University of Connecticut, U.S.A.

Schultz, J.C., 65
Penn State University, U.S.A.

Schultz, T., 364*
Denison University, U.S.A.

Schutte, W.A., Jr., 288*
American Museum of Natural History & Bloomsfield College, U.S.A.

Schaake, K., 497*
University of Alaska, U.S.A.

Schwarz, M., 28
Flinders University of South Australia, Australia

Scott, L., 874*
University of Idaho, U.S.A.

Seger, J., 479*
University of Utah, U.S.A.

Servedio, M., 536*
University of Texas, Austin, U.S.A.

Servio, P.M., 197*, 231
Northern Arizona University, U.S.A.

Severeen, H., 242*
La Universidad del Zulia, Venezuela

Shahbala, S.A., 270, 838
Cornell University, U.S.A.

Shaffer, H.B., 650*
University of California, Davis, U.S.A.

Shapiro, L.H., 713
National Zoological Park, U.S.A.

Sharbel, T.F., 313*
Max-Planck-Institut für Verhaltensphysiologie, Germany

Sharitz, R.R., 747
University of Georgia & Savannah River Ecology Lab, U.S.A.

Sharpe, R., 280*
University of Leeds, U.K.

Shaw, F., 324
University of Minnesota, U.S.A.

Shaw, K.L., 730*
Harvard University, U.S.A.

Shaw, R., 224*
Washington Evolutionary Systems Society, U.S.A.

Shaw, R., 324, 325*
University of Minnesota, U.S.A.

Sheldon, F.H., 653*
Louisiana State University, U.S.A.

Sherry, R., 452*
University of Missouri, U.S.A.

Shu, G., 57
Harvard University, U.S.A.

Shultz, J.W., 284, 766*
University of Maryland, U.S.A.

Shumate, A.M., 860*
Dartmouth College, U.S.A.

Shuy, S.K., 811
University of Texas Health Science Center, U.S.A.

Siigel-CAUSEY, D., 501
University of Nebraska, Lincoln, U.S.A.

Silva, J.C., 319*
University of Arizona, U.S.A.

Simmons, N.B., 288
American Museum of Natural History, U.S.A.

Simms, E.L., 86*, 602, 746*
University of Chicago, U.S.A.

Simon, C., 504, 767, 849
University of Connecticut, U.S.A.

Sinervo, B., 93*
Sinha, N., 737
University of California, Davis, U.S.A.

Slade, J., 221
University of Edinburgh, U.K.

Sliwinski, J.B., 129, 186*
Southeastern Louisiana University, U.S.A.

Smelken, M., 12*
Netherlands Institute of Ecology, Netherlands

Smith, H., 278
University of Colorado, Boulder, U.S.A.

Smith, J., 305
New Mexico State University, U.S.A.

Smith, J., 473*
Michigan State University, U.S.A.

Smith, M.F., 855*
University of California, Berkeley, U.S.A.

Smith, M.J., 250, 802
Simon Fraser University, Canada

Smith, R., 26
University of Texas, Arlington, U.S.A.

Smith, R.J., 513*
Nebraska Wesleyan University, U.S.A.

Smith, T.B., 158
San Francisco State University, U.S.A.

Smock, R., 722
DePaul University, U.S.A.

Snedden, W.A., 148*, 149
University of Kansas, U.S.A.

Snyder, M.A., 88
Colorado College, U.S.A.

Soberan-Mainero, J., 444
University Nacional Autonoma de Mexico, Mexico

Solarz, S.L., 368*
University of Minnesota, U.S.A.

Soltes, D.E., 6, 155, 159, 794
Washington State University, U.S.A.

Soltes, P.S., 6*, 155, 159, 700
Washington State University, U.S.A.

Sorensen, N.D., 286
University of Michigan, U.S.A.

Spangler, R.E., 433*
Harvard University Herbaria, U.S.A.

Spaulding, A., 283*
Utah State University, U.S.A.

Spears, T., 643*
Florida State University, U.S.A.

Spencer, C.C., 255*
University of Southwestern Louisiana, U.S.A.

Sperling, F.A.H., 234, 236, 282, 330
University of California, Berkeley, U.S.A.

Springer, M., 123*, 823
University of California, Riverside, U.S.A.

Strygley, R., 670
University of Washington, U.S.A.

Staedler, T., 815
University of Frankfurt, Germany

Stamps, J.A., 726
University of California, Davis, U.S.A.

Stanger-Hall, K.F., 122*
Wake Forest University, U.S.A.

Stanhope, M., 123
Queen's University, Canada, U.S.A.

Stanley, S., 165*, 652
Cornell University, U.S.A.

Stanton, M.L., 67, 587
University of California, Davis, U.S.A.
Stanton, D., 496*
Princeton University, U.S.A.

Steele, M., 245
University of Canterbury, New Zealand

Steinbachs, J., 451*
University of Connecticut, U.S.A.

Steinberg, E.K., 486, 664*
University of Washington, U.S.A.

Steiner, A., 686
University of Oregon, U.S.A.

Steiner, R., 692
National Botanical Institute, Republic of South Africa

Stephan, W., 196
University of Maryland, U.S.A.

Stephenson, A.G., 251
Penn State University, U.S.A.

Stephenson, C.A., 661*
Case Western Reserve University, U.S.A.

Stephani, S., 121*
Smithsonian Institution, U.S.A.

Stern, H., 716
Iowa State University, U.S.A.

Stewart, A., 354*
University of Texas, Arlington, U.S.A.

Stewart, B., 495
Hubbs-Sea World Institute, U.S.A.

Stirling, G., 40, 41*
McGill University, Canada

Stiven, A.E., 254*
University of North Carolina, Chapel Hill, U.S.A.

Stockwell, C.A., 662*
Savannah River Ecology Lab, U.S.A.

Stoltz, U., 333, 334, 547*
University of Notre Dame, U.S.A.

Stone, J.L., 134*
Duke University, U.S.A.

Storhau, M., 311*
Max-Planck-Institut für Verhaltensphysiologie, Germany

Strand, A., 385, 431*
New Mexico State University, U.S.A.

Stranger, B., 171, 795*
University of Montana, U.S.A.

Straughan, D., 204*
California State University, Long Beach, U.S.A.

Strauss, S.Y., 89*
University of California, Davis, U.S.A.

Strong, D.R., 806
University of California, Davis Bodega Marine Lab, U.S.A.

Strong, L., 458*
Brown University, U.S.A.

Stuart, A., 25*
University of Toronto, Canada

Suddith, J., 427
North Carolina State University, U.S.A.

Suh, K.-I., 502*
University of Arkansas, U.S.A.

Sullivan, B., 259
Arizona State University - West, U.S.A.

Sullivan, J., 300*
Smithsonian Institution, U.S.A.

Sumrall, C.D., 131
Tulane University, U.S.A.

Sun, H., 809*
University of Texas Health Science Center, U.S.A.

Surridge, A.K., 867*
University of East Anglia, U.K.

Sutherland, M., 501*
University of Nebraska, Lincoln, U.S.A.

Swalla, B.J., 362*
Swanson, R., 676
Recombinant BioCatalyst Inc.

Swanson, W.J., 113*
Scripps Institution of Oceanography, University of California, San Diego, U.S.A.

Swiderski, D.L., 413*, 414
University of Michigan, U.S.A.

Swefford, D.L., 300
Smithsonian Institution, U.S.A.

Sword, G.A., 446
University of Arizona, U.S.A.

Sydes, M., 614*
Australian National University, Australia

Symonds, T.V., 345*
California State University, Fresno, U.S.A.

Szekely, L., 245
University of South Carolina, U.S.A.

Takahata, N., 210, 620*
The Graduate University of Advanced Studies, Japan

Takano, T.S., 786*
National Institute of Genetics, Japan

Takebayashi, N., 781*
University of Indiana, U.S.A.

Tan, Y., 369*
Yale University, U.S.A.

Tanda, S., 196
University of Maryland, U.S.A.

Tatar, M., 94*
University of Mississippi, U.S.A.

Taylor, G.M., 673*
University of Alberta, Canada

Taylor, J.F., 560
Texas A&M University, U.S.A.

Taylor, J.S., 743*
Simon Fraser University, Canada

Taylor, P.D., 522
Queen's University, Canada

Taylor, W., 409
National Institute for Medical Research, U.K.

Telford, M.J., 563
Natural History Museum, London, U.K.

Thiede, D.A., 321*
University of California, Davis, U.S.A.

Thomas, C., 478
University of Leeds, U.K.

Thomas, M.A., 65*
Penn State University, U.S.A.

Thomas, R.H., 563*
Natural History Museum, London, U.K.

Thomerson, J.E., 734
SIUE at Edwardsville

Thompson, J.N. Jr., 225*
University of Oklahoma, U.S.A.

Thompson, D.B., 582*
University of Nevada, Las Vegas, U.S.A.

Thorne, J.L., 298*
North Carolina State University, U.S.A.

Thorpe, R.S., 475
University of Wales, U.K.

Tibbets, C.A., 117*, 558
Arizona State University, U.S.A.

Tiffen, P., 782*
Duke University, U.S.A.

Tishkov, S.A., 119*
Penn State University, U.S.A.

Tobler, M., 81
University of Montana, U.S.A.

Toonen, R.J., 584*
University of California, Davis, U.S.A.

Tourtelot, M.K., 148, 149
University of Kansas, U.S.A.

Trapp, P.G., 453
Boulder Valley Schools, U.S.A.

86
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travers, S., 133*</td>
<td>University of California, Santa Barbara, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Travis, J., 546, 843*</td>
<td>Florida State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Tredler, J., 491</td>
<td>Florida International University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Tringali, M.D., 675*</td>
<td>Florida Marine Research Institute, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Tsaur, S.-C., 507</td>
<td>University of Chicago, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Tuljapurkar, S., 586</td>
<td>Mountain View Research, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Turelli, M., 603*</td>
<td>University of California, Davis, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Turner, N., 604, 708</td>
<td>University of Tennessee, Knoxville, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Turner, T., 491</td>
<td>Florida International University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Ueynomyama, M.K., 134, 210, 621*</td>
<td>Duke University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Vaquieri, V.D., 113, 114</td>
<td>Scripps Institution of Oceanography, University of California, San Diego, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Van Horne, B., 684</td>
<td>Colorado State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>van Tienderen, P.H., 12, 669*</td>
<td>Netherlands Institute of Ecology, Netherlands</td>
<td></td>
</tr>
<tr>
<td>Varotto, V., 870</td>
<td>Universita' di Padova, Italy</td>
<td></td>
</tr>
<tr>
<td>Vasco, D.A., 455*, 639*</td>
<td>University of Texas, Houston, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Vassileva, L.L., 18*</td>
<td>University of Oregon, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Vawter, L., 260*</td>
<td>SmithKline Beechem</td>
<td></td>
</tr>
<tr>
<td>Vekemans, X., 449, 619*</td>
<td>Universite Libre de Bruxelles, Belgium</td>
<td></td>
</tr>
<tr>
<td>Venable, D.L., 8, 137*</td>
<td>University of Arizona, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Verrelli, B.C., 818*</td>
<td>State University of New York, Stony Brook, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Via, S., 24*, 62, 423</td>
<td>University of Maryland, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Viard, F., 229*</td>
<td>University of British Columbia, Canada & University of Montpellier, France</td>
<td></td>
</tr>
<tr>
<td>Villinski, J., 515*</td>
<td>Indiana University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Voelker, G., 610*</td>
<td>University of Washington, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Vogler, A.P., 332*</td>
<td>Natural History Museum, London & Imperial College at Silwood Park, U.K.</td>
<td></td>
</tr>
<tr>
<td>von Doblen, C.D., 283</td>
<td>Utah State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>von Dormann, M., 163*</td>
<td>Harvard University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Vrijenhoek, R.C., 644</td>
<td>Rutgers University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wade, M., 808*</td>
<td>University of Chicago, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wagner, W.E., Jr., 147*</td>
<td>University of Nebraska, Lincoln, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wagner, W.L., 238</td>
<td>Smithsonian Institution, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wagstaff, S.J., 649</td>
<td>Manoaki Whenua Landcare Research, Lincoln, New Zealand</td>
<td></td>
</tr>
<tr>
<td>Wajntal, A., 292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universidade de Sao Paulo, Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakeley, J.R., 637*</td>
<td>Rutgers University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wallace, R., 600</td>
<td>Iowa State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Waller, D.M., 779</td>
<td>University of Wisconsin, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wallis, G.P., 22*</td>
<td>University of Otago, New Zealand</td>
<td></td>
</tr>
<tr>
<td>Walser, C., 632</td>
<td>Brigham Young University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Walsh, K.A., 212</td>
<td>Penn State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wang, H., 206, 474*</td>
<td>Medical College of Georgia, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Waples, R.S., 698</td>
<td>National Marine Fisheries Service, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Ward, T., 257*</td>
<td>Texas A&M University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Warner, R.R., 105*</td>
<td>University of California, Santa Barbara, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Warnow, T., 245*, 246</td>
<td>University of Pennsylvania, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wasson, K., 275*</td>
<td>Friday Harbor Laboratories, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Watkins, R.F., 521*</td>
<td>Simon Fraser University, Canada</td>
<td></td>
</tr>
<tr>
<td>Webb, C., 838*</td>
<td>Cornell University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Weber, D., 495*</td>
<td>California State University, Long Beach, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Weis, A.E.*, 87</td>
<td>University of California, Irvine, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Weis, J., 853</td>
<td>Rutgers University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Weirick, D., 179*</td>
<td>Iowa State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wells, C.S., 571*</td>
<td>James Madison University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wells, J.D., 282*</td>
<td>University of California, Berkeley, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wen, J., 829*</td>
<td>Colorado State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wendel, J.F., 599, 600, 773</td>
<td>Iowa State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Wente, W.H., 304*</td>
<td>Indiana University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Westerman, M., 609, 823</td>
<td>La Trobe University, Australia</td>
<td></td>
</tr>
<tr>
<td>Westlake, K., 535*</td>
<td>University of Toronto, Canada</td>
<td></td>
</tr>
<tr>
<td>Whalen, M., 706</td>
<td>Finders University, Australia</td>
<td></td>
</tr>
<tr>
<td>Wheeler, T., 560</td>
<td>Texas A&M University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>White, J.W., 830*</td>
<td>Michigan State University, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Whitman, H., 544*</td>
<td>Murray State University & Rocky Mountain Biological Laboratory, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Whitfield, J.B., 281, 502</td>
<td>University of Arkansas, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Whitkus, R., 616</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Williams, N.M., 776*
State University of New York, Stony Brook, U.S.A.

Williams, E., 865*
Texas A&M University, U.S.A.

Willink, P., 658*
University of Michigan, U.S.A.

Willis, J.H., 400*
University of Oregon, U.S.A.

Wills, C., 557
University of California, San Diego, U.S.A.

Wilson, C., 219*, 443*
Australian National University, Australia

Winberg, P., 107*
University of Puget Sound, U.S.A.

Wise, C.A., 615*
University of Colorado, Boulder, U.S.A.

Wisotzkey, R.G., 482*
Massachusetts General Hospital & Harvard Medical School, U.S.A.

Witkowski, J.H., 578*
University of Arizona, U.S.A.

Woese, C., 676
University of Illinois, U.S.A.

Wolf, D.E., 699*
Indiana University, U.S.A.

Wolf, J.B., 84*
University of Kentucky, U.S.A.

Wolf, M.R., 212*
Penn State University, U.S.A.

Woodring, J., 33
Colorado Division of Wildlife, U.S.A.

Woodruff, R.C., 208, 225, 228, 717, 718
Bowling Green State University, U.S.A.

Woomer, L., 844*
National Zoo, U.S.A.

Worley, A.C., 135*

University of Toronto, Canada

Wray, G.A., 273, 359*, 464, 566
State University of New York, Stony Brook, U.S.A.

Wright, M., 872
Scripps Research Institute, University of California, San Diego, U.S.A.

Wyatt, R., 450, 707
University of Georgia, U.S.A.

Yampolsky, L.Y., 270, 838
Cornell University, U.S.A.

Yang, Z., 181, 824*
University of California, Berkeley, U.S.A.

Yarbrough, C.D., 216*
University of Idaho, U.S.A.

Yeates, D., 507
University of Queensland, Australia

Yen, A.C., 434*, 436
University of Washington, U.S.A.

Yew, F.-H., 490
National Taiwan University, Taiwan

Yoder, A.D., 287*
Northwestern Medical School, U.S.A.

Yoder, B.J., 7
Oregon State University, U.S.A.

Yoshimura, T., 678
National Cancer Institute, Fredrick, Maryland, U.S.A.

Young, H., 517*
Barnard College, U.S.A.

Young, J.R., 785
Costal Carolina University, U.S.A.

Young, N.D., 692*
Vanderbilt University, U.S.A.

Yu, D.W., 861*
Harvard University, U.S.A.

Yu, H.-T., 490

National Taiwan University, Taiwan

Yuan, H., 232*, 501
University of Nebraska, Lincoln, U.S.A.

Zaklan, S., 768*
University of Alberta & Bamfield Marine Station, Canada

Zani, P.A., 359*
University of Oregon, U.S.A.

Zardoya, R., 365
State University of New York, Stony Brook, U.S.A.

Zeh, D.W., 106, 337*
University of Houston, U.S.A.

Zeh, J.A., 106*, 337
University of Houston, U.S.A.

Zelditch, M.L., 413, 414*
University of Michigan, U.S.A.

Zera, A.J., 198, 232, 501, 542*
University of Nebraska, Lincoln, U.S.A.

Zeyl, C., 172, 351*
Michigan State University, U.S.A.

Zhang, D., 164
University of East Anglia, U.K.

Zhang, J., 109*
Penn State University, U.S.A.

Zhang, L., 477
University of Chicago, U.S.A.

Zhou, Y.-H., 809, 811
University of Texas Health Science Center, U.S.A.

Zimmer, E.A., 238, 357*
Smithsonian Institution, U.S.A.

Zink, R.M., 155, 393
Bell Museum of Natural History, University of Minnesota, U.S.A.

Zucker, N., 21*
New Mexico State University, U.S.A.
Zurovecova, M., 817
State University of New York, Stony Brook, U.S.A.